PT - JOURNAL ARTICLE AU - Anne-Katrin Giese AU - Markus D. Schirmer AU - Kathleen L. Donahue AU - Lisa Cloonan AU - Robert Irie AU - Stefan Winzeck AU - Mark J.R.J. Bouts AU - Elissa C. McIntosh AU - Steven J. Mocking AU - Adrian V. Dalca AU - Ramesh Sridharan AU - Huichun Xu AU - Petrea Frid AU - Eva Giralt-Steinhauer AU - Lukas Holmegaard AU - Jaume Roquer AU - Johan Wasselius AU - John W. Cole AU - Patrick F. McArdle AU - Joseph P. Broderick AU - Jordi Jimenez-Conde AU - Christina Jern AU - Brett M. Kissela AU - Dawn O. Kleindorfer AU - Robin Lemmens AU - Arne Lindgren AU - James F. Meschia AU - Tatjana Rundek AU - Ralph L. Sacco AU - Reinhold Schmidt AU - Pankaj Sharma AU - Agnieszka Slowik AU - Vincent Thijs AU - Daniel Woo AU - Bradford B. Worrall AU - Steven J. Kittner AU - Braxton D. Mitchell AU - Jonathan Rosand AU - Polina Golland AU - Ona Wu AU - Natalia S. Rost TI - Design and rationale for examining neuroimaging genetics in ischemic stroke AID - 10.1212/NXG.0000000000000180 DP - 2017 Oct 01 TA - Neurology Genetics PG - e180 VI - 3 IP - 5 4099 - http://ng.neurology.org/content/3/5/e180.short 4100 - http://ng.neurology.org/content/3/5/e180.full SO - Neurol Genet2017 Oct 01; 3 AB - Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI–GENetics Interface Exploration (MRI-GENIE) study.Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.ADC=apparent diffusion coefficient; AIS=acute ischemic stroke; CE=cardioembolic; CCS=Causative Classification of Stroke; CCSc=causative CCS; DICOM=Digital Imaging and Communications in Medicine; DWI=diffusion-weighted imaging; DWIv=DWI volume; FLAIR=fluid-attenuated inversion recovery; GISCOME=Genetics of Ischemic Stroke Functional Outcome; GWAS=genome-wide association studies; ICC=intraclass correlation coefficient; LAA=large artery atherosclerosis; MGH=Massachusetts General Hospital; MRI-GENIE=MRI–GENetics Interface Exploration; mRS=modified Rankin Scale; PHI=protected health information; QC=quality control; SAO=small artery occlusion; SiGN=Stroke Genetics Network; SNP=single nucleotide polymorphism; SWI=susceptibility-weighted imaging; TOAST=Trial of Org 10172 Acute Stroke Treatment; VLSM=voxel-based lesion–symptom mapping; WMHv=white matter hyperintensity volume; XNAT=eXtensible Neuroimaging Archive Toolkit