Adult-Onset Alexander Disease: New Causal Sequence Variant in the GFAP Gene

Tsepo Goerttler, Dr med, Letizia Zanetti, MSc, Maria Regoni, MSc, Karl Kellner, Dr med, Cornelius Deuschi, Dr med, Christoph Kleinschnitz, Prof Dr med, Jenny Sassone, PhD, and Stephan Klebe, Prof Dr med

Neurol Genet 2022;8:e681. doi:10.1212/NXG.0000000000000681

Abstract

Objectives
Alexander disease (AD) is a rare disorder of the CNS. Diagnosis is based on clinical symptoms, typical MRI findings, and mutations in the glial fibrillary acid protein (GFAP) gene. In this case study, we describe a new mutation (p.L58P) in GFAP that caused a phenotype of adult-onset AD (AOAD).

Methods
In our outpatient clinic, a patient presented with cerebellar and bulbar symptoms after brain concussion. We used MRI and performed next-generation exome sequencing (NGS) to find mutations in GFAP to diagnose AD. The mutation was then transfected into HeLa cell lines to prove its pathogenicity.

Results
The brain MRI finding showed typical AD alterations. The NGS found a heterozygous variant of unknown significance in GFAP (c.173T>C; p.L58P). After transfecting HeLa cell lines with this mutation, we showed that GFAP-L58P formed pathogenic clusters of cytoplasmic aggregates.

Discussion
We have found a new mutation that causes AOAD. We recommend that AOAD is included in the diagnostic workup in adult patients with gait ataxia and cerebellar and bulbar symptoms in association with a traumatic head injury.

From the Department of Neurology (T.G., C.K., S.K.), Essen University Hospital, Germany; Division of Neuroscience (L.Z., M.R., J.S.), San Raffaele Scientific Institute; Vita-Salute San Raffaele University (L.Z., M.R., J.S.), Milan, Italy; Department of Radiology (K.E.), Tauernklinikum Zell am See, Academic Teaching Hospital of the Paracelsus University Salzburg, and Medical University of Vienna, Austria; Department of MR Physics (E.K.), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; and Institute of Diagnostic and Interventional Radiology and Neuroradiology (C.D.), University Hospital Essen, Germany.

Go to Neurology.org/NG for full disclosures. Funding information is provided at the end of the article.

The Article Processing Charge was funded by University of Duisburg-Essen.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Alexander disease (AD) is a rare, mostly sporadic, disorder of the CNS with degeneration of astrocytes. Adult-onset AD (AOAD) is more heterogeneous with nonspecific neurologic symptoms, mainly bulbar dysfunction, pyramidal signs, cerebellar ataxia, and palatal myoclonus.

Typical MRI findings are T2-hyperintensities of the periventricular white matter and atrophy of the spinal cord (tadpole sign), as well as contrast enhancement of the medulla oblongata and the spinal cord. Neuropathologically, AD is defined as having intracytoplasmic eosinophilic inclusions in astrocytes. Autopsy shows leukodystrophy and atrophy of the lower brainstem and upper cervical cord.

Mutations in the glial fibrillary acid protein gene (GFAP) are linked to AD. Its mutations lead to alterations in the protein, thereby causing accumulation and aggregation of precipitates of misfolded GFAP proteins.

Case

We report a 57-year-old male patient who experienced a progressive gait disorder, clumsiness, generalized muscle weakness, and intermittent position-independent vertigo. The patient first reported symptoms after a mild traumatic brain injury approximately 1 year before. Later, dysarthria and dysphagia also occurred. Autonomic dysfunction such as orthostatic hypotension and bowel or bladder dysfunction was not present. A family history of neurologic or neurodegenerative disorders was negative (Figure 1).

A clinical examination showed nystagmus, cerebellar dysarthria, an ataxic gait pattern, and dysmetria of the upper and lower extremities. In addition, the patient experienced mild bradykinesia on the right side, rigidity of the right upper extremity, brisk muscle reflexes, and positive pyramidal signs.

An MRI of the brain, immediately after the brain injury and 1 year before symptom onset, displayed atrophy of the medulla oblongata and cervical myelon (tadpole sign). A follow-up brain MRI revealed progressive T2-hyperintensities surrounding the fourth ventricle, symmetrical in the dentate nucleus and in the putamina, together with the tadpole sign (Figure 2A). In line with these findings, an automated brain volumetry analysis using VEOmorph software (VEObrain GmbH, Freiburg, Germany) detected atrophic changes in the medulla oblongata (Figure 2B).

Next-generation exome sequencing (NGS) identified a heterozygous variant of unknown significance in GFAP (c.173T>C; p.L58P). This variant substitutes an evolutionary, highly conserved amino acid, but the present substitution was not found in 125,748 GnomAD exomes and 15,708 GnomAD genomes. Several in silico analyses have predicted that the p.L58P substitution is likely to be pathogenic.

To test whether this new mutation c.173T>C; p.L58P in GFAP affects intermediate filament network formation, we introduced the point mutation in the plasmid encoding human GFAP (OriGene Technologies, SC118873 by mutagenesis (QuikChange XL Site-Directed Mutagenesis Kit, Agilent)). HeLa cells were transfected with either GFAP-WT.
Forty-eight hours after transfection, cell lysates were analyzed by Western blot to demonstrate the plasmid expression (Figure 3A), and cell monolayers were immunostained with an antibody against GFAP. Fluorescence images showed that wild-type GFAP assembled into bundled filaments that extended throughout the cytoplasm, whereas GFAP-L58P formed clusters of cytoplasmic aggregates (Figure 3B). Because cytoplasmic inclusions within astrocytes of patients with AD also contain the chaperones αB-crystallin, we costained the cells with an antibody against αB-crystallin. Written informed consent was obtained from the patient.

Discussion

Owing to the primarily nonspecific clinical symptoms of cerebellar ataxia, bulbar symptoms, and positive pyramidal signs, only the brain MRI led to the suspected diagnosis of AOAD. Using NGS, the heterozygote variant (c.173T>C; or GFAP-L58P gene were positive for αB-crystallin. Written informed consent was obtained from the patient.
p.L58P) in GFAP was found and categorized as variant of unknown significance. In vitro experiments demonstrated that this variant represented a novel mutation that affected the formation of the intermediate filament network and confirmed the diagnosis of AOAD.

Our patient stated that he experienced gait ataxia, clumsiness, and vertigo after minor brain concussion due to an accident. A correlation between AOAD and traumatic head injuries has been described before, with a latency between trauma and symptom onset of up to 10 years.7-9 Considering that severe symptoms may appear many years later, these incidences might be underrated. Similar to dystonia, we hypothesize a second-hit theory in the emergence of AOAD.

AD must be considered as a differential diagnosis in adult patients with new ataxia, bulbar symptoms, and leukodystrophy and the tadpole sign in brain MRI. Furthermore, anamnestic hints for traumatic head injuries exposing the disease onset must be taken into account. The second-hit theory is an interesting concept in the emergence of AOAD that should be considered in upcoming research.

Acknowledgment

The authors thank the patient and his family for their willingness to take part in this research and Elena Monzani for preparing the plasmids for transfecting the cell lines with the new mutation. The authors acknowledge support by the Open Access Publication Fund of the University of Duisburg-Essen.

Study Funding

This work was supported by the Bundesministerium für Forschung und Bildung (BMBF) through funding for the TreatHSP network (No. 01GM1905 to S.K.).

Disclosure

E. Kellner is a shareholder of and receives payments from VEObrain GmbH, Freiburg, Germany. Go to Neurology.org/NG for full disclosures.

Publication History

Received by Neurology: Genetics January 21, 2022. Accepted in final form April 7, 2022. Submitted and externally peer reviewed. The handling editor was Stefan M. Pulst, MD, Dr med, FAAN.
Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsepo Goerttler, Dr med</td>
<td>Department of Neurology, Essen University Hospital, Germany</td>
<td>Drafting/revision of the article for content, including medical writing for content; major role in the acquisition of data; study concept or design; and analysis or interpretation of data</td>
</tr>
<tr>
<td>Letizia Zanetti, MSc</td>
<td>Division of Neuroscience, San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy</td>
<td>Analysis or interpretation of data</td>
</tr>
<tr>
<td>Maria Regoni, MSc</td>
<td>Division of Neuroscience, San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy</td>
<td>Analysis or interpretation of data</td>
</tr>
<tr>
<td>Karl Egger, Dr med</td>
<td>Department of Radiology, Tauernklinikum Zell am See, Academic Teaching Hospital of the Paracelsus University Salzburg, and Medical University of Vienna, Austria</td>
<td>Analysis or interpretation of data</td>
</tr>
<tr>
<td>Elias Kellner, Dr med</td>
<td>Department of MR Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany</td>
<td>Analysis or interpretation of data</td>
</tr>
<tr>
<td>Cornelius Deuschl, Dr med</td>
<td>Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany</td>
<td>Drafting/revision of the article for content, including medical writing for content; and analysis or interpretation of data</td>
</tr>
<tr>
<td>Christoph Kleinschnitz, Prof Dr med</td>
<td>Department of Neurology, Essen University Hospital, Germany</td>
<td>Drafting/revision of the article for content, including medical writing for content</td>
</tr>
</tbody>
</table>

Appendix (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenny Sassone, PhD</td>
<td>Division of Neuroscience, San Raffaele Scientific Institute; Vita-Salute San Raffaele University, Milan, Italy</td>
<td>Drafting/revision of the article for content, including medical writing for content; analysis or interpretation of data</td>
</tr>
<tr>
<td>Stephan Klebe, Prof Dr med</td>
<td>Department of Neurology, Essen University Hospital, Germany</td>
<td>Drafting/revision of the article for content, including medical writing for content; major role in the acquisition of data; study concept or design; and analysis or interpretation of data</td>
</tr>
</tbody>
</table>

References

Adult-Onset Alexander Disease: New Causal Sequence Variant in the GFAP Gene
Tsepo Goerttler, Letizia Zanetti, Maria Regoni, et al.

Neurol Genet 2022;8;
DOI 10.1212/NXG.0000000000000681

This information is current as of May 20, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://ng.neurology.org/content/8/3/e681.full.html

References
This article cites 7 articles, 1 of which you can access for free at:
http://ng.neurology.org/content/8/3/e681.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Genetics
http://ng.neurology.org//cgi/collection/all_genetics
Brain trauma
http://ng.neurology.org//cgi/collection/brain_trauma
Gait disorders/ataxia
http://ng.neurology.org//cgi/collection/gait_disorders_ataxia
MRI
http://ng.neurology.org//cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://ng.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://ng.neurology.org/misc/addir.xhtml#reprintsus

Neurol Genet is an official journal of the American Academy of Neurology. Published since April 2015, it is an open-access, online-only, continuous publication journal. Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Online ISSN: 2376-7839.