PRPS1 Gene Mutation Causes Complex X-Linked Adult-Onset Cerebellar Ataxia in Women

Flávio M. Rezende Filho, MD, PhD, Mariana M. Palma, MD, José Luiz Pedroso, MD, PhD, Orlando G. Barsottini, MD, PhD, and Juliana M. Sallum, MD, PhD

Neurol Genet 2021;7:e563. doi:10.1212/NXG.0000000000000563

Inherited retinal dystrophies (IRD) comprise a heterogeneous group of disorders that affect visual function. IRD occur in isolated forms or in association with systemic abnormalities.1 Over 300 disease-causing genes have been identified in IRD.

We report an unusual form of syndromic IRD with a complex neurologic phenotype caused by a mutation in PRPS1 gene. Pathogenic variants in PRPS1 lead to Arts syndrome, X-linked deafness 1, PRPS-related gout, or Charcot-Marie-Tooth 5 (CMTX5) in boys,2 but it has been recently shown that women may also be symptomatic and display hearing loss, ophthalmologic abnormalities, and neurologic manifestations.3

Case Report

A 30-year-old woman, born from nonconsanguineous parents, presented with a 5-year history of progressive ataxia. She also had congenital strabismus, infantile-onset hearing loss, and a retinal dystrophy with progressive visual loss for the past 10 years. The visual acuity was 20/200 on the right eye and 20/40 on the left eye. Fundus examination revealed pale optic discs, attenuated vessels, and atrophic areas containing whitish fine dots, reticular pigmentation, and bone spicules bilaterally. Examination showed cerebellar ataxia, dysarthria, and gaze-evoked nystagmus. Audiometry confirmed bilateral sensorineural hearing loss. Brain MRI showed atrophy in the pons, middle cerebellar peduncles, vermis, and cerebellar hemispheres (figure). The genetic test for Friedreich ataxia was negative. Alpha-fetoprotein, albumin, vitamin E, creatine kinase, and lactate were normal. Whole-exome sequencing disclosed a heterozygous missense variant c.359G>T(p.Gly120Val) in one of her PRPS1 alleles.

Discussion

PRPS1 is located in X chromosome and codes the enzyme phosphoribosyl pyrophosphate (PRPP) synthetase 1. This enzyme is involved in the synthesis of PRPP from ATP and ribose-5-phosphate, which is essential in the production of purines (adenine and guanine) and pyrimidines (cytosine, thymine, and uracil) nucleotides, the building blocks of life. Pathogenic variants in PRPS1 cause 4 distinct conditions in males: CMTX5, X-linked deafness 1 (DFNX1), Arts syndrome, and an inherited form of gout (PRPS-related gout). Sensorineural hearing loss is the only common manifestation of these disorders and the isolated finding of DFNX1. Patients with CMTX5 and Arts syndrome additionally have peripheral neuropathy, ataxia, and optic atrophy.2,4 Severe cognitive decline, recurrent infections, and early death complicate the clinical course in Arts syndrome, the most severe phenotype.5 Individuals with PRPS-related
PRPS1 is the X inactivation. De novo variants and skewed inactivation of X chromosome have been described.

The work by Fiorentino et al.\(^7\) demonstrated 7 of 9 patients with PRPS1-related retinal dystrophy had asymmetric retinal abnormalities. A high proportion of women with X-linked IRD have fundus changes, which are frequently asymmetric. This may be a consequence of skewed inactivation of X chromosomes in females, causing a higher proportion of retinal cells to express the pathogenic variant of PRPS1 gene, rather than the wild-type allele. The degree of skewed X-chromosome inactivation and PRPP synthetase residual activity are the likely determinants of phenotype severity in women with pathogenic variants of PRPS1.\(^4\)

It is noteworthy that PRPS1-related disorders might be treatable. Dietary S-adenosylmethionine supplementation (SAM) exploits an alternative route of ATP biosynthesis, which may alleviate the shortage of adenosine-derived nucleotides. Of interest, in 2 individuals with Arts syndrome, SAM supplementation resulted in clinical improvement.\(^2\)

In conclusion, this report illustrates the remarkable phenotypic variability of PRPS1 mutations, which may cause a rare form of X-linked adult-onset cerebellar ataxia. Asymmetric retinal dystrophy might represent a clue for the diagnosis of PRPS1 spectrum disease in women with hearing loss and cerebellar signs.

Acknowledgment

The authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for have funded this study.

Study Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (grant number: 2019/15298-1).

Disclosure

F.M. Rezende Filho and M.M. Palma report no disclosures relevant to the manuscript. J.L. Pedroso received grant from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo). O.G.P. Barsottini and J.M.F. Sallum report no disclosures relevant to the manuscript. Go to Neurology.org/NG for full disclosures.

Publication History

Received by Neurology: Genetics September 7, 2020. Accepted in final form December 8, 2020.

Appendix Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flávio M. Rezende Filho, MD, PhD</td>
<td>Universidade Federal de São Paulo, Brazil</td>
<td>Conception, organization, and execution; writing of the first draft</td>
</tr>
<tr>
<td>Mariana M. da Paula, MD</td>
<td>Universidade Federal de São Paulo, Brazil</td>
<td>Conception, organization, and execution; writing of the first draft</td>
</tr>
</tbody>
</table>

Figure Ophthalmologic and Radiologic Findings

Color fundus photographs of both eyes depicting pale optic discs, attenuated retinal vessels, and atrophic areas containing whitish fine dots with reticular pigmentation (A). The pattern of retinal dystrophy is remarkably asymmetric and more severe on the right eye, in which the macula is affected. Axial T2-weighted sequence of brain MRI shows atrophy in the cerebellar peduncles and pons (B) and in cerebellar hemispheres (C) (white arrows).
References

Appendix (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>José Luiz Pedroso, MD, PhD</td>
<td>Universidade Federal de São Paulo, Brazil</td>
<td>Conception, organization, and execution; review and critique</td>
</tr>
<tr>
<td>Orlando G. Barsottini, MD, PhD</td>
<td>Universidade Federal de São Paulo, Brazil</td>
<td>Conception, organization, and execution; review and critique</td>
</tr>
<tr>
<td>Juliana M.F. Sallum, MD, PhD</td>
<td>Universidade Federal de São Paulo, Brazil</td>
<td>Conception, organization, and execution; review and critique</td>
</tr>
</tbody>
</table>
PRPS1 Gene Mutation Causes Complex X-Linked Adult-Onset Cerebellar Ataxia in Women
Flávio M. Rezende Filho, Mariana M. Palma, José Luiz Pedroso, et al.
Neurol Genet 2021;7;
DOI 10.1212/NXG.0000000000000563

This information is current as of February 3, 2021

| Updated Information & Services | including high resolution figures, can be found at: http://ng.neurology.org/content/7/2/e563.full.html |
| References | This article cites 7 articles, 1 of which you can access for free at: http://ng.neurology.org/content/7/2/e563.full.html##ref-list-1 |
| Subspecialty Collections | This article, along with others on similar topics, appears in the following collection(s):
 - All Genetics
 http://ng.neurology.org/cgi/collection/all_genetics
 - Audition
 http://ng.neurology.org/cgi/collection/audition
 - Gait disorders/ataxia
 http://ng.neurology.org/cgi/collection/gait_disorders_ataxia
 - Retina
 http://ng.neurology.org/cgi/collection/retina |
| Permissions & Licensing | Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://ng.neurology.org/misc/about.xhtml#permissions |
| Reprints | Information about ordering reprints can be found online: http://ng.neurology.org/misc/addir.xhtml#reprintsus |

Neurol Genet is an official journal of the American Academy of Neurology. Published since April 2015, it is an open-access, online-only, continuous publication journal. Copyright Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Online ISSN: 2376-7839.