Variable reporting of C9orf72 and a high rate of uncertain results in ALS genetic testing

Holly Klepek, MS, Stephen A. Goutman, MD, Adam Quick, MD, Stephen J. Kolb, MD, PhD, and Jennifer Roggenbuck, MS, CGC

Neurol Genet 2019;5:e301. doi:10.1212/NXG.0000000000000301

Ten years ago, commercial ALS genetic testing was limited to SOD1 sequencing. Commercial laboratories now offer a variety of multigene ALS panels, assays for the C9orf72 hexanucleotide expansion, and whole exome sequencing. The utility of genetic testing as part of ALS clinical management is valued by people with ALS and ALS clinicians. However, US care guidelines do not address the offer of genetic testing, and European guidelines specify that ALS genetic testing should be offered only to patients with familial ALS or the SOD1 D90A phenotype. To understand the current state of ALS genetic testing, we surveyed certified commercial laboratories to gather data on test methods, outcomes, and reporting.

Methods

Eight commercial US laboratories were identified using laboratory registries (GTR.org and Genetests.org), which listed ALS genetic testing options. A 13-question survey was emailed to the laboratory directors or genetic counselors in July 2017, with 2 reminder emails at 1-month intervals thereafter. Two laboratories were excluded; one offered only 1 minor ALS gene (VCP) and the other did not offer testing specifically for ALS.

Results

Responses were received from 5/6 eligible laboratories (83.3%). All 5 responding laboratories (designated as Labs A-E) offered multigene ALS panels (ranging from 19 to 49 genes); 4 also offered C9orf72 repeat expansion assays. C9orf72 assays included repeat-primed PCR and/or fluorescent fragment-length assays. Laboratory-specific test methods and outcomes for C9orf72 assays and multigene panels are shown in the table.

Discussion

Our survey data confirm that commercial ALS genetic testing options have increased in number and complexity in recent years and highlight potential limitations and challenges associated with the use of this technology. Concerns have been raised regarding the accuracy of PCR-based C9orf72 assays. In a blinded study of commercial laboratories using PCR-based techniques, only 5/14 laboratories reported C9orf72 results in complete concordance with the reference Southern blot result, and both false negative and false positive results were identified. A 10 base-pair deletion adjacent to the repeat has been shown to interfere with detection of the expansion using PCR-based assays. Despite the ensuing recommendation that Southern blot be used for clinical C9orf72 testing, no surveyed laboratory offered this; only 1 laboratory performs a 2-step protocol combining both
a fluorescent PCR and repeat-primed PCR that increases sensitivity and specificity in detecting expansions. Furthermore, laboratory cutoffs for normal, intermediate, and expanded alleles varied, indicating that intermediate or small expansions, although rare, could be resulted differently at different laboratories. There is currently no validated cutoff that differentiates between pathologic and nonpathologic alleles, but most patients with pathogenic expansions have hundreds to thousands of repeats. The identification of intermediate alleles in patients with ALS may be incidental. In addition, expansion sizes in blood may differ from those in relevant neural tissues, further complicating result interpretation. Test reports should ideally emphasize the clinico-pathological variability and age-dependent penetrance of pathologic expansions and include a statement that the pathogenicity of repeat sizes between 20 and 100 is unknown but likely increases with the size of the repeat.

Variant of uncertain significant (VUS) rates on multigene panel testing ranged from 12% to 30%, suggesting that many patients with ALS have received a VUS result. VUS outcomes are often frustrating for clinicians and patients, and it is not known what patients are told or understand about such results. Although rare variant burden may play a role in the etiology of ALS, VUS must be approached with caution in the clinical setting. VUS interpretation is particularly challenging in ALS, in part because affected family members are often not available for segregation analysis. Further data are needed regarding test methods and outcomes, including accuracy of current C9orf72 assays, as well as VUS rates and interpretation. False positive or negative results could have profound implications for patients and family members.

One limitation of this study is that data were self-reported by a small number of US laboratories. Test method and interpretation data were checked against technical specification pages of laboratory websites whenever possible, but some data, such as test outcomes, were not possible to confirm. Nonetheless, the use of genetic testing is likely to grow with the advent of gene-targeted therapies for ALS. Although this will identify appropriate candidates for new therapies, this will also result in an increased need for clinician and patient education regarding all aspects of the testing process. ALS

<table>
<thead>
<tr>
<th>Table</th>
<th>Commercial ALS genetic testing methodology, reporting, and outcomes</th>
</tr>
</thead>
</table>

C9orf72 assay methodologies and reporting

<table>
<thead>
<tr>
<th>Methods</th>
<th>Laboratory A</th>
<th>Laboratory B</th>
<th>Laboratory C</th>
<th>Laboratory D</th>
<th>Laboratory E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern blot</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>N/O*</td>
<td>–</td>
</tr>
<tr>
<td>Repeat-primed PCR</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>N/O*</td>
<td>+</td>
</tr>
<tr>
<td>Fluorescent fragment-length assay</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>N/O*</td>
<td>–</td>
</tr>
</tbody>
</table>

| Normal allele cutoff/repeat size reported | ≤23/+ | ≤20/+ | ≤22/+ | N/O* | ≤24/+ |
| Expanded allele cutoff/repeat size reported | ≥30/− | ≥30/− | ≥30/− | N/O* | ≥60/+ |

C9orf72 assay test outcomes (%)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Laboratory A</th>
<th>Laboratory B</th>
<th>Laboratory C</th>
<th>Laboratory D</th>
<th>Laboratory E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>18.8</td>
<td>21.0</td>
<td>18.5</td>
<td>N/O*</td>
<td>N/Rb</td>
</tr>
<tr>
<td>Negative</td>
<td>80.7</td>
<td>77.6</td>
<td>80.8</td>
<td>N/O*</td>
<td>N/Rb</td>
</tr>
<tr>
<td>Intermediate/indeterminate</td>
<td>0.5</td>
<td>1.4</td>
<td>0.7</td>
<td>N/O*</td>
<td>N/Rb</td>
</tr>
</tbody>
</table>

ALS multigene panel outcomes (%)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Laboratory A</th>
<th>Laboratory B</th>
<th>Laboratory C</th>
<th>Laboratory D</th>
<th>Laboratory E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>26.4</td>
<td>20.7</td>
<td>14.4</td>
<td>16.3</td>
<td>N/Rb</td>
</tr>
<tr>
<td>Negative</td>
<td>53.7</td>
<td>67.0</td>
<td>57.5</td>
<td>53.8</td>
<td>N/Rb</td>
</tr>
<tr>
<td>VUS</td>
<td>19.6</td>
<td>12.3</td>
<td>28.1</td>
<td>29.8</td>
<td>N/Rb</td>
</tr>
</tbody>
</table>

* N/O, C9orf72 assay not offered by laboratory.
* N/R, data not reported by laboratory.
* Repeat sizes of up to 145 reported.
genetic testing guidelines, addressing test indication, technical methodology, result interpretation and reporting, as well as genetic counseling, may assist clinicians in navigating the challenges of this technology.

Author contributions
H. Klepek: designed, piloted, and administered the survey; analyzed the data; and drafted the manuscript for intellectual content. S.A. Goutman: study conceptualization, survey design, and edited the manuscript. A. Quick: survey design and edited the manuscript. S.J. Kolb: study conceptualization, survey design, and edited the manuscript. J. Roggenbuck: study conceptualization, designed and piloted the survey; analyzed the data; and drafted the manuscript for intellectual content.

Study funding
No targeted funding reported.

Disclosure
H. Klepek reports no disclosures. S. Goutman has received commercial research support from Cytokinetics; has received governmental research support from the NIH/National Institute of Environmental Health Sciences and the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry; and has received foundation/society research support from Target ALS and the ALS Association. A. Quick reports no disclosures. S.J. Kolb has served on the scientific advisory board of Genentech and has received governmental research support from the NIH, the NINDS, and the National Institute of Child Health and Human Development. J. Roggenbuck has served on the advisory board of Invitae. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG.

Publication history
Received by Neurology: Genetics June 27, 2018. Accepted in final form November 2, 2018.

References
Variable reporting of C9orf72 and a high rate of uncertain results in ALS genetic testing
Holly Klepek, Stephen A. Goutman, Adam Quick, et al.
Neurol Genet 2019;5;
DOI 10.1212/NXG.0000000000000301

This information is current as of January 7, 2019

Updated Information & Services
including high resolution figures, can be found at:
http://ng.neurology.org/content/5/1/e301.full.html

References
This article cites 7 articles, 1 of which you can access for free at:
http://ng.neurology.org/content/5/1/e301.full.html#ref-list-1

Citations
This article has been cited by 8 HighWire-hosted articles:
http://ng.neurology.org/content/5/1/e301.full.html#otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Amyotrophic lateral sclerosis
http://ng.neurology.org//cgi/collection/amyotrophic_lateral_sclerosis_

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://ng.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://ng.neurology.org/misc/addir.xhtml#reprintsus