AP4 deficiency
A novel form of neurodegeneration with brain iron accumulation?

Agathe Roubertie, MD, PhD, Nelson Hieu, MSc,∗ Charles-Joris Roux, MD,* Nicolas Leboucq, MD, Gael Manes, PhD, Majida Charif, PhD, Bernard Echenne, MD, Cyril Goizet, MD, PhD, Claire Guissart, PhD, Pierre Meyer, MD, Cecilia Marelli, MD, François Rivier, MD, PhD, Lydie Burglen, MD, Rita Horvath, MD, PhD, Christian P. Hamel, MD, PhD, and Guy Lenaers, PhD

Neurol Genet 2018;4:e217. doi:10.1212/NXG.0000000000000217

Abstract

Objective
To describe the clinico-radiological phenotype of 3 patients harboring a homozygous novel AP4M1 pathogenic mutation.

Methods
The 3 patients from an inbred family who exhibited early-onset developmental delay, tetraparesis, juvenile motor function deterioration, and intellectual deficiency were investigated by magnetic brain imaging using T1-weighted, T2-weighted, T2*-weighted, fluid-attenuated inversion recovery, susceptibility weighted imaging (SWI) sequences. Whole-exome sequencing was performed on the 3 patients.

Results
In the 3 patients, brain imaging identified the same pattern of bilateral SWI hyposignal of the globus pallidus, concordant with iron accumulation. A novel homozygous nonsense mutation was identified in AP4M1, segregating with the disease and leading to truncation of half of the adap domain of the protein.

Conclusions
Our results suggest that AP4M1 represents a new candidate gene that should be considered in the neurodegeneration with brain iron accumulation (NBIA) spectrum of disorders and highlight the intersections between hereditary spastic paraplegia and NBIA clinical presentations.

*These authors contributed equally to this work.

From the Département de Neuropédiatrie (A.R., B.E., P.M., F.R.), CHU Gui de Chauliac, Montpellier; Institut des Neurosciences de Montpellier (A.R., N.H., G.M., C.P.H.), INSERM U1051, Université de Montpellier; Service de Neuroradiologie (C.-J.R., N.L.), CHU Gui de Chauliac, Montpellier; Equipe Mitolab (M.C., G.L.), UMR CNRS 6015-INSERM 1083, Institut Mitovasc, University of Angers, France; Department of Medical Genetics (C. Goizet), Hopital Pellegrin, Bordeaux University Hospital; MRGM Laboratory (C. Goizet), INSERM U1211, University of Bordeaux; Laboratoire de Génétique Moléculaire (C. Guissart), CHU de Montpellier; U1046 INSERM (P.M., F.R.), UMR214 CNRS, Université de Montpellier; Department of Neurology (C.M.), University Hospital Gui de Chauliac, Montpellier; Centre de Référence des Malformations et Maladies Congénitales du Cervelet (L.B.), Service de Génétique, Hôpital Armand Trousseau, AP-HP, Paris, France; Wellcome Trust Centre for Mitochondrial Research (R.H.), Institute of Genetic Medicine, Newcastle University, United Kingdom; and Centre of Reference for Genetic Sensory Diseases (C.P.H.), Montpellier, France.

Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG.

The Article Processing charge was funded by the Montpellier Hospital.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Glossary

HSP = hereditary spastic paraplegia; NBIA = neurodegeneration with brain iron accumulation; SWI = susceptibility weighted imaging; WES = whole-exome sequencing.

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative diseases clinically characterized by progressive lower extremity weakness and spasticity, which may be isolated (pure HSP) or combined with other neurologic or nonneurological signs (complex HSP). More than 70 genes have been implicated, emphasizing diverse molecular pathogenic mechanisms. In this respect, recessive mutations in genes encoding the different subunits of adaptor protein complex-4, (AP4B1, AP4M1, AP4E1, and AP4S1) have been identified in patients with complex HSP (SPG 47, 50, 51, and 52 respectively). The AP4-deficiency syndrome is characterized by progressive spasticity, microcephaly, intellectual deficiency, dysmorphic traits, and growth retardation, while epilepsy and peripheral neuropathy might be associated. Brain imaging phenotypes reported up to now are characterized by cerebral atrophy, asymmetric enlargement of lateral ventricles, white matter loss, and thin corpus callosum splenium. Thin and globoid hippocampal cortex and tortuosity of intraextracranial large vessels were also reported.

Neurodegeneration with brain iron accumulation (NBIA), which is characterized by dystonia, parkinsonism, spasticity, and brain iron accumulation on MRI, represents another inherited group of neurodegenerative disorders, due to mutations in 10 genes, with molecular overlaps with HSP.

Here, we report 3 patients from the same kindred who harbor a homozygous AP4M1 mutation. They exhibit the typical clinico-radiological phenotype of AP4-deficiency syndrome, but surprisingly associated with bilateral pallidal iron accumulation on brain imaging, thus establishing a link between AP4-related complex HSP and NBIA disorders.

Methods

Standard protocol approvals, registrations, and patient consents
The study was conducted in accordance with the Declaration of Helsinki and was approved by the local ethical committee. Written informed consent was obtained from the patients’ legal representatives.

Whole-exome sequencing and brain imaging
Whole-exome sequencing (WES) was performed on the DNA from the 3 affected patients by Aros Ltd. Homozygous mutations common to the 3 patients were filtered progressively for their frequency (<1%), alteration of the open reading frame (frameshift, splicing, missense, and nonsense mutations), and ultimately for their localization in the homozygous regions common to the 3 patients. Sanger sequencing allowed for their confirmation and segregation study in the family.

CT was performed on a 64-section CT scanner (Discovery750 HD; GE Health care, Milwaukee, WI). MRIs were acquired on a 1.5-T system (AVENTO; Siemens medical solutions, Erlangen, Germany) as follows: axial slices T2-weighted, T2*-weighted, fluid-attenuated inversion recovery, susceptibility weighted imaging (SWI) sequences, and sagittal slices T1-weighted sequences.

Results

Clinical data
The clinical features of the 3 patients originating from a large consanguineous Moroccan family (figure 1A) are described in table. Psychomotor retardation with spasticity of the 4 limbs was noticed early in life. Clinical examination from the first year showed spastic tetraplegia, with pyramidal tract signs and equinovarus. Patients IV-2 and IV-5 sat unaided at 7 months; patient IV-2 was able to crawl at 2 years but never managed to walk; her sister IV-5 could walk short distances with unsteady gait from the age of 5 years. Patient IV-7 sat unaided at 11 months of age and walked at 3 years, with a broad-based unsteady gait. The patients exhibited stable severe mental deficiency, without behavioral disturbance. Motor achievements progressively deteriorated at adolescence, with loss of the highest motor skills, but without additional cognitive decline; from that time, bradykinesia, hypomimy, drooling, and athetoid movements of the hands were also noticed. Patients IV-5 and IV-7 displayed short stature. Dystrophic features (figure 2, Aa, Ba, Ca) were also present. The 3 patients needed assistance to most common daily living activities.

The following investigations were normal: electro-myoneurography recording, cardiac ultrasound scan, visual and auditory evoked potentials, fundus examination, karyotype analysis on lymphocytes (cases IV-2, IV-5 and IV-7), PANK2 and PLA2G6 Sanger sequencing (patient IV-7), and analyses of mitochondrial enzymatic activities on a muscle sample (patient IV-2).

Genetic results

Comparison of WES results performed for patients IV-2, IV-5, and IV-7 revealed 3 homozygous regions, 1 on chromosome 7 (5.7 Mb) and 2 on chromosome 9 (2.25 and 1.31 Mb). A total of 14,753 exonic variants were common to the 3 patients, and by progressively filtering them, we identified 4,974
homozygous variants, among which 2,546 were non-
synonymous, frameshift, splicing, or stop variants. Further
filtering for damaging variants with a frequency lower than 1%
identified 3 mutations in the AP4M1, HRNR, and NPIPL3
genes, but only the 1 in AP4M1 was located in chromosome 7,
in 1 of the 3 homozygous regions.
This c.916C>T mutation (rs369459721) is leading to
a premature stop codon (p.R306X), truncating the last 147
residues of the protein (figure 1, B and C). It has a global
allelic frequency of 2.4 × 10\(^{-5}\) in the ExAC and a frequency
of 3.0 × 10\(^{-5}\) in Non-Finnish European and 9.3 × 10\(^{-5}\) in
African, while it was not encountered in the rest of the world.

Analysis of the homozygous variants located in the 10 known
NBIA genes revealed 2 common variants, located in CP
(rs701753) and PANK (rs3737084), but they were not
damaging, had a frequency higher than 1%, and were located
away from the 3 homozygous regions.

Brain imaging

Brain MRI of the 3 patients showed global cerebral atrophy,
white matter loss, asymmetric ventriculomegaly (figure 2, Ab,
Ac, and H), and thinning of the splenium of the corpus
callosum (data not shown J). T1 sequences showed an iso-
intense pattern of the globus pallidus (data not shown). T2
sequences revealed symmetric mild hypointensity of the
globus pallidus, which was significantly accentuated on SWI
sequences (figure 2, Ab, Ac, Bb, Bc, Cb, Cc, D). Patient IV-7’s
CT was normal (data not shown).

Discussion

We identified a homozygous nonsense mutation in AP4M1 in 3
women from the same inbred family by WES. This R306X
mutation deletes the last 147 residues of the protein, truncating
half of the adap domain, an effect similar to that reported in 2
other families who harbored a stop codon truncating the
AP4M1 protein at positions 318 and 338.9 Until now, only 5
different AP4M1 mutations have been reported in 7 families
with a common clinical presentation4,5,9,13-15 (figure 1C). The 3
patients from our study share the same clinical phenotype with
variable severity, consisting in early-onset developmental delay,
tetraparesis, juvenile motor function deterioration, intellectual
deficiency, athetoid upper limb movements, bradykinesia,
and mild dysmorphism, which fits with the previously de-
scribed AP4-deficiency syndrome. Even if the bilateral pallidal

Table Clinical features of 3 AP4M1 individuals

<table>
<thead>
<tr>
<th>Patient</th>
<th>Patient IV-2</th>
<th>Patient IV-5</th>
<th>Patient IV-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex/age at last examination</td>
<td>F/25 y</td>
<td>F/16 y</td>
<td>F/23 y</td>
</tr>
<tr>
<td>Perinatal parameter</td>
<td>Normal</td>
<td>Normal</td>
<td>Low birth weight</td>
</tr>
<tr>
<td>Seizures</td>
<td>No</td>
<td>1 febrile seizure during the second year of life</td>
<td>1 febrile seizure at 20 m</td>
</tr>
<tr>
<td>Age at acquisition of unaided sitting</td>
<td>7 m</td>
<td>7 m</td>
<td>11 m</td>
</tr>
<tr>
<td>Highest motor achievements</td>
<td>Able to crawl at 2 y</td>
<td>Unsteady spastic gait at 5 y</td>
<td>Independent broad-based unsteady gait at 3 y</td>
</tr>
<tr>
<td>Motor deterioration/age</td>
<td>Unable to crawl at 13 y</td>
<td>Assisted gait from 12 y</td>
<td>Assisted gait from 15 y</td>
</tr>
<tr>
<td>Spasticity and pyramidal tract signs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Equinovarus</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bradykinesia and athetoid movements of the hands</td>
<td>From adolescence</td>
<td>From adolescence</td>
<td>From adolescence</td>
</tr>
<tr>
<td>Language</td>
<td>Short sentences</td>
<td>Short sentences</td>
<td>Less than 10 words</td>
</tr>
<tr>
<td>Behavior</td>
<td>Shy and introverted form adolescence</td>
<td>Normal</td>
<td>Smiley</td>
</tr>
<tr>
<td>Intellectual deficiency</td>
<td>Severe</td>
<td>Moderate</td>
<td>Severe</td>
</tr>
<tr>
<td>Growth parameter at last follow-up</td>
<td>Normal</td>
<td>Short stature</td>
<td>Short stature</td>
</tr>
<tr>
<td>Height 160 cm, weight 68 kg</td>
<td>Height 150 cm, weight 55 kg</td>
<td>Height 143 cm, weight 44 kg</td>
<td></td>
</tr>
<tr>
<td>Microcephaly</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Head circumference</td>
<td>53 cm</td>
<td>52 cm</td>
<td>48.5 cm</td>
</tr>
<tr>
<td>Dysmorphism</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

m = month; y = year.
hyposignal is mild on T2 sequences and could be interpreted as physiologic iron accumulation at this age, the substantial hyposignal on SWI is totally unusual in patients of the same age. These findings, correlated with the absence of hypersignal on T1-weighted imaging or CT hyperdensities in the patients, are strongly suggestive of brain iron overload.

Iron deposits have not been previously reported in patients with AP4-deficiency syndrome. Nevertheless, magnetic susceptibility sequences, which can confirm the presence of iron, have not been performed in most of the reported cases; therefore, this feature might have been underdiagnosed. A search for homozygous mutations common to the 3 patients in the 10 published NBIA genes revealed 2 variants located in PANK and CP, but their frequency and the absence of pathogenicity were somehow incompatible with their involvement as modifier mutations switching HSP clinical presentation to NBIA.

Of interest, a patient with AP4E1 mutations, whose brain MRI showed bilateral T2-hypointensity of the globus pallidus, has already been described. This peculiar finding, although not discussed in the article, strongly suggests iron accumulation in this AP4E1 patient, as in our 3 AP4M1 patients.

The pathophysiology of HSP involves many cellular pathways as cellular transport, nucleotide metabolism, and synapse and axon developments, providing a causative link between HSP and other neurodegenerative diseases. Overlaps between HSP and NBIA are well known, as already reported for cases with mutations in FA2H and C19orf12 genes (SPG 35 and 43, respectively). The AP-4 complex is a heterotetramer ubiquitously expressed in the CNS early in the embryologic and postnatal development and is implicated in vesicle formation, post-Golgi protein trafficking, and sorting processes. Eventually, AP-4 dysfunction might affect autophagy by disrupting the early steps of endosomal formation, a process shared with Kufor-Rabeb disease and beta-propeller protein-associated neurodegeneration, 2 forms of NBIA related to ATP13A2 and WDR45 genes, respectively.

Moreover, NBIA disorders are probably underdiagnosed, and the evolution of technologies and practices in radiology leads to the identification of many new candidate genes through the incorporation of susceptibility weighted sequences more frequently in the brain imaging protocols. Our study has limitations, especially because of the small sample size.

Nevertheless, according to our findings in AP4M1 mutated patients, we recommend that brain MRI with susceptibility weighted sequences be included in the brain imaging protocol for patients with suspected HSP and AP4-deficiency syndrome to collect a larger group of patients, and we propose...
that mutations in AP4 genes be considered and screened in a subset of patients with NBIA spectrum disorders.

Author contributions

Acknowledgment
The authors acknowledge the patients and their families for participating in the study. They thank La Fonation Maladies Rares et Retina France. They are indebted to the INSERM and CNRS and the Montpellier University for their institutional supports. They thank the Region Pays de la Loire, Angers Loire-Métropole, University of Angers, and University Hospital of Angers for their support to the PREMMI project. They are indebted to Dr. Lagavulin for helpful discussions.

Study funding
No targeted funding reported.

Disclosure
A. Roubertie, N. Hieu, C.-J. Roux, N. Leboucq, G. Manes, M. Charif, and B. Echenne report no disclosures. C. Goizet has served on the scientific advisory boards of Amicus Therapeutics and Sanofi Genzyme and has received travel funding/speaker honoraria from Sanofi Genzyme, Amicus Therapeutics, and Shire. C. Guissart and P. Meyer report no disclosures. C. Marelli has received travel funding/speaker honoraria from Actelion Pharmaceuticals. F. Rivier, L. Burglen, and
References

AP4 deficiency: A novel form of neurodegeneration with brain iron accumulation?
Neurol Genet 2018;4;
DOI 10.1212/NXG.0000000000000217

This information is current as of January 24, 2018
<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://ng.neurology.org/content/4/1/e217.full.html</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 19 articles, 2 of which you can access for free at:</td>
</tr>
<tr>
<td></td>
<td>http://ng.neurology.org/content/4/1/e217.full.html##ref-list-1</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 2 HighWire-hosted articles:</td>
</tr>
<tr>
<td></td>
<td>http://ng.neurology.org/content/4/1/e217.full.html##otherarticles</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>All Genetics</td>
</tr>
<tr>
<td></td>
<td>http://ng.neurology.org/cgi/collection/all_genetics</td>
</tr>
<tr>
<td></td>
<td>Developmental disorders</td>
</tr>
<tr>
<td></td>
<td>http://ng.neurology.org/cgi/collection/developmental_disorders</td>
</tr>
<tr>
<td></td>
<td>MRI</td>
</tr>
<tr>
<td></td>
<td>http://ng.neurology.org/cgi/collection/mri</td>
</tr>
<tr>
<td></td>
<td>Spastic paraplegia</td>
</tr>
<tr>
<td></td>
<td>http://ng.neurology.org/cgi/collection/spastic_paraplegia</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://ng.neurology.org/misc/about.xhtml#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://ng.neurology.org/misc/addir.xhtml#reprintsus</td>
</tr>
</tbody>
</table>