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ABSTRACT

Objective: To examine the incidence of nonsynonymous missense variants in SCN9A (NaV1.7),
SCN10A (NaV1.8), and SCN11A (NaV1.9) in patients with painful and nonpainful peripheral
neuropathy.

Methods: Next-generation sequencing was performed on 457 patient DNA samples provided by
the Peripheral Neuropathy Research Registry (PNRR). The patient diagnosis was as follows: 278
idiopathic peripheral neuropathy (67% painful and 33% nonpainful) and 179 diabetic distal poly-
neuropathy (77% painful and 23% nonpainful).

Results:We identified 36 (SCN9A), 31 (SCN10A), and 15 (SCN11A) nonsynonymous missense
variants, with 47.7% of patients carrying a low-frequency (minor allele frequency ,5%)
missense variant in at least 1 gene. The incidence of previously reported gain-of-function
missense variants was low (#3%), and these were detected in patients with and without
pain. There were no significant differences in missense variant allele frequencies of any
gene, or SCN9A haplotype frequencies, between PNRR patients with painful or nonpainful
peripheral neuropathy. PNRR patient SCN9A and SCN11A missense variant allele frequen-
cies were not significantly different from the Exome Variant Server, European American
(EVS-EA) reference population. For SCN10A, there was a significant increase in the alternate
allele frequency of the common variant p.V1073A and low-frequency variant pS509P in
PNRR patients compared with EVS-EA and the 1000 Genomes European reference
populations.

Conclusions: These results suggest that identification of a genetically defined subpopulation for
testing of NaV1.7 inhibitors in patients with peripheral neuropathy is unlikely and that additional
factors, beyond expression of previously reported disease “mutations,” are more important for the
development of painful neuropathy than previously discussed. Neurol Genet 2017;3:e207; doi:

10.1212/NXG.0000000000000207

GLOSSARY
bp5 base pair; CL5 confidence limit; EUR5 European; EVS-EA5 Exome Variant Server, European American; FDR5 false
discovery rate; GOF 5 gain of function; HWE 5 Hardy-Weinberg; IEM 5 inherited erythromelalgia; MAF 5 minor allele
frequency; NCV 5 nerve conduction velocity; NGS 5 next-generation sequencing; NIST 5 National Institute of Standards
and Technology; OR 5 odds ratio; PNRR 5 Peripheral Neuropathy Research Registry; SFN 5 small fiber neuropathy; SNP 5
single nucleotide polymorphism.

Human genetics provides compelling evidence that the voltage-gated sodium channel, NaV1.7,
plays a critical role in pain. Gain-of-function (GOF) mutations in SCN9A, the gene encoding
NaV1.7, cause inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder, rare
familial diseases associated with excruciating pain.1–3 By contrast, loss-of-function SCN9A
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mutations cause congenital insensitivity to
pain, a rare autosomal recessive disease char-
acterized by loss of pain sensation.1,2 These
findings have triggered renewed efforts to
develop novel, selective NaV1.7 inhibitors for
the treatment of pain4 and expanded NaV
channel sequencing to patients with more
prevalent chronic pain conditions. In this re-
gard, rare missense variants have been reported
in SCN9A,5,6 SCN10A,6,7 and SCN11A,8

genes encoding NaV1.7, NaV1.8, and
NaV1.9, respectively, in patients with painful
small fiber neuropathy (SFN). It is thought
that enhanced NaV channel activity may
directly contribute to the pain experienced
by these patients because several of the mis-
sense variants identified exert GOF effects in
cell-based electrophysiology assays.9

The identification of patients carrying path-
ologic NaV missense variants provides an
opportunity to select subjects whose pain
may be more effectively treated with novel
NaV agents. In this study, we collaborated
with the Foundation for Peripheral Neuropa-
thy to obtain DNA samples from patients with
idiopathic or diabetic peripheral neuropathy
enrolled in the Peripheral Neuropathy
Research Registry (PNRR). The objective
was to identify missense variants in SCN9A,
SCN10A, and SCN11A and to examine their
frequency in patients whose peripheral neu-
ropathy was painful or nonpainful.

METHODS Patients. The study was performed at Bristol-

Myers Squibb using whole blood DNA samples obtained

from patients enrolled in the PNRR from 2011 to February

2015. Clinical information and patient DNA samples were

provided by the Neurology Departments at John Hopkins

University, Northwestern Medical Faculty Foundation, Beth

Israel Medical Center-Harvard Medical School, and Icahn

School of Medicine at Mount Sinai Medical Center. Con-

senting patients were evaluated using a comprehensive patient

examination form and patient health questionnaire and

received peripheral nerve workup including nerve conduction

studies and, in some cases, analysis of skin biopsies. A copy of

the patient health questionnaire is provided in the supple-

mental information and included questions about sensory,

motor, and autonomic symptoms and medication. Patients

were instructed to answer pain-related questions from the

perspective of their neuropathy only, and those with addi-

tional complex medical issues or neurologic diseases were

excluded from the registry. A DNA sample for next-

generation sequencing (NGS) was obtained from 457 pa-

tients; 278 patients diagnosed with idiopathic peripheral

neuropathy (186 painful and 92 nonpainful) and 179 patients

diagnosed with diabetic distal polyneuropathy (138 painful

and 41 nonpainful). The PNRR patient sample comprised

61% of males and 83% of Caucasian ethnicity, and patients

with painful peripheral neuropathy were significantly younger

(by on average 6–7 years) than those without pain (table e-1 at

Neurology.org/ng).

Standard protocol approvals, registrations, and patient
consents. At each consortium site, institutional review board

approval was obtained based on a unified protocol developed as

a consensus by the consortium members. Written informed con-

sent was obtained from all patients presenting to the neurology

clinics that agreed to enroll in the PNRR.

Nav-targeted sequencing and variant calling. Agilent Sure-
Select hybrid capture probes were designed based on GRCh 37.3

to span entire 50 kb flanking, exonic, and intronic regions of

SCN9A, SCN10A, and SCN11A totaling to 682,262 base pairs

(bps). National Institute of Standards and Technology (NIST)

standard NA12878 and NA18507 HapMap cell line DNAs were

used as assay and informatics controls. PNRR patient DNA sam-

ples were randomized for processing and across NGS runs and

plates using criteria of age, race, pain, and several clinical criteria

including numbness, weakness, walk balance, diabetes, smoking,

and alcohol consumption. Libraries were prepared using a stan-

dard Agilent SureSelect protocol and were sequenced on an Illu-

mina HiSeq 2000 system with 100 bp-paired end reads to attain

a minimal 200X coverage. The average coverage obtained was

400X per base in the targeted regions, with 10%–20% of bases

missing coverage across all samples. The sequencing reads were

mapped to the human genome build hg19 (GRCh 37),10 and the

variant calling was performed using Genome Analysis Toolkit

(GATK) best practices (https://software.broadinstitute.org/gatk/

best-practices).11–13 The variants were annotated using snpEff.14

Performance of the variant calling pipeline was assessed using

NIST NA12878, looking at sensitivity (TP/TP 1 FN) and

specificity (FP/FP 1 TN), where TP are variants called and

present in NIST, FP are variants called but not present in NIST,

FN are variants not called but present in NIST, and TN are

variants not called and not present in NIST. A 93% sensitivity

was observed, and positive predictive value and false discovery

rate (FDR) were 51% and 49%, respectively. Variant calls were

filtered to include variants with FILTER 5 “PASS”j“VQSR-

TrancheSNP99.90to100.00”j“VQSRTrancheSNP99.00to99.90.”

Variant classification and allele frequency comparisons.
PNRR variants were designated as common (minor allele fre-

quency [MAF] . 5%) or low frequency (MAF ,5%) based

on the alternate allele frequency reported in the NHLBI Exome

Sequencing Project Exome Variant Server, European American

(EVS-EA) population.15 To compare PNRR variant allele fre-

quencies in patients with or without pain, or to reference pop-

ulations (EVS-EA and 1000 Genomes Project16 global or

European (EUR) populations), the Fisher exact test was per-

formed using allele counts, and the Benjamini and Hochberg17

FDR was used to correct for multiple testing. All analyses were

performed in R, and results were reported as the Fisher P and Q

values.

SCN9A haplotype analysis. PNRR single nucleotide polymor-

phisms (SNPs) with MAF.10% were used for haplotype analysis.

Genotypes were phased using BEAGLE V4.1.18 Haplotype block

definition and frequency comparison were performed in Haplo-

view.19 TAGGER within the Haploview package was used to find

tag SNPs for each haplotype blocks to refine haplotype block def-

initions. A x2 test was used to compare haplotype frequencies.
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Data and statistical analysis. Height, weight, and year of birth

were analyzed by a 2-tailed t test to compare patients with dia-

betic or idiopathic peripheral neuropathy with pain vs without

pain (GraphPad Prism v7). Statistical analysis methods for non-

synonymous variant and haplotype comparisons are described

above.

RESULTS Incidence of genetic variants in the PNRR

cohort. NGS of SCN9A, SCN10A, and SCN11A
identified .1000 variants in each gene, with most
(79%–87%) occurring in intronic regions (table e-
2). Most of the protein-coding variants we identi-
fied were nonsynonymous, missense variants that
changed the amino acid sequence (figure 1A). Details
of the gene location and alternate allele frequency for
each nonsynonymous missense variant we identified
are reported in the supplementary section (figure e-1
and tables e-3 and e-4). Variants were designated as
low frequency (MAF ,5%) or common (MAF
.5%) based on the alternate allele frequency re-
ported in the EVS-EA database. A low-frequency
missense variant in at least 1 gene was present in
47.7% (218/457) of patients with 9.8% carrying low-
frequency variants in multiple genes (figure 1B). For
individual genes, the number of patients carrying at
least 1 low-frequency variant was 24.5%, 21%, and

13.6% for SCN9A, SCN10A, and SCN11A, respec-
tively. Patients were heterozygous carriers of low-
frequency missense variants except for 5 subjects
who were homozygous carriers of the SCN10A var-
iants p.P1045T (n5 1), p.S509P (n5 2), or p.R14L
(n 5 1) or the SCN11A variant p.T1609I (n 5 1).

Comparison with reference populations. For each gene,
the analysis included all common and low-frequency
nonsynonymous missense variants reported in PNRR
patients, and the reference population being exam-
ined. The reference populations and the number of
missense variants included in each analysis were as
follows: EVS-EA: SCN9A (26), SCN10A (21), and
SCN11A (10); 1000 Genomes (1K) global and EUR:
SCN9A (23), SCN10A (21), and SCN11A (9). For
SCN10A, an increase in the alternate allele frequency
was observed for p.V1073A (odds ratio [OR] 5

1.2519; 95% confidence limits [CLs] 1.0851–
1.4443; p 5 0.0021) and p.S509P (OR 5 1.9225;
95% CL 1.3994–2.6411; p 5 0.0001) compared
with EVS-EA (table 1, table e-5). Similar results were
also seen in comparison to the 1K-EUR population
(p.V1073A: OR 5 1.5783; 95% CL 1.3066–
1.9064; p , 0.0001; p.S509P: OR 5 2.0098; 95%
CL 1.2432–3.2488; p5 0.0044) (table 1, table e-5).

Figure 1 Protein-coding variants identified in SCN9A, SCN10A, and SCN11A

(A) Variants were classified based on changes in amino acid sequence. For each gene, results show the number (%) of variants identified in each class. (B)
Number (%) of patients in the Peripheral Neuropathy Research Registry (PNRR) cohort (n 5 457) that carry a low-frequency missense variant in NaV1.7,
NaV1.8, and/or NaV1.9. Variants identified in PNRR patients were designated as low frequency (minor allele frequency ,5%) based on the alternate allele
frequency reported in the Exome Variant Server, European American reference population.
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Several additional variants identified in SCN9A,
SCN10A, and SCN11A had alternate allele frequen-
cies that were significantly different from the 1K
global population, but few remained significant
compared with 1K-EUR, and none remained signif-
icant compared with the EVS-EA population (table 1,
tables e-5, e-6, and e-7). The alternate allele fre-
quencies in reference populations for previously re-
ported GOF variants in SCN9A, SCN10A, and
SCN11A are shown in tables e-3 and e-4 and were not
significantly different in PNRR patients compared
with the EVS-EA population.

Relationship to pain status in PNRR patients. We next
focused on examining the incidence of nonsynony-
mous missense variants in PNRR patients with pain-
ful or nonpainful peripheral neuropathy. Evaluation
of clinical information identified a small number of
subjects (17/457; 3.7%) with discrepancies between
patient self-reported and physician-reported pain
which were excluded from further analysis. The re-
sulting distribution of patients was as follows: 270
idiopathic (183 painful and 87 nonpainful) and 170
diabetic (134 painful and 36 nonpainful). For all
missense variants identified in each gene, analysis of
allele frequency showed no significant difference
between patients with or without pain (tables e-8,
e-9, and e-10). We also saw no significant difference

in the number of missense variants carried in each
gene or all 3 genes combined in patients with or
without pain (figure e-2). Consistent with results for
the complete PNRR cohort, the number of patients
carrying at least 1 low-frequency missense variant in
SCN9A, SCN10A, or SCN11A was 25%, 21%, and
13%, respectively, with most of the individual var-
iants or variant combinations present in only 1
patient (tables e-11, e-12, and e-13). For low-
frequency variants present in .2% of patients, the
incidence was similar in painful and nonpainful
conditions (figure 2, figures e-3 and e-4) and in pa-
tients with diabetic and idiopathic peripheral neu-
ropathy (figures e-4, e-5, and e-6). Finally, we
selected a subset of patients with idiopathic peripheral
neuropathy with probable, painful SFN using 2 ap-
proaches: (1) patients with idiopathic peripheral
neuropathy with pain, autonomic symptoms but
without weakness based on the patient history ques-
tionnaire (71 subjects) and (2) patients with idio-
pathic peripheral neuropathy with pain, normal nerve
conduction velocity (NCV) but with abnormal skin
biopsies with length-dependent patterns (19 sub-
jects). The incidence of low-frequency missense var-
iants in these groups was similar to the complete
PNRR cohort (SCN9A 20%–26%, SCN10A 20%–

21%, and SCN11A 14%–21%; table e-14).

Incidence of previously reported low-frequency missense

variants. For SCN9A, 30/457 patients (6.6%) carried
a low-frequency missense variant previously reported
in patients with painful SFN,5,6 painful diabetic
peripheral neuropathy,20 or (primary) IEM21,22 of
which 14 (3.1%) carried GOF variant(s) based on
cell-based electrophysiology results (p.I228M,23 p.
G616R,21 p.I739V,24,25 and p.M932L/p.V991L5/p.
W1538R22; table e-15). For SCN10A and SCN11A,
previously reported variants6–8 were detected in 4 or 2
patients, respectively, with only 2 (0.4%) or 1 (0.2%)
patient(s) carrying a known GOF variant (p.
G1662S26 (SCN10A) or p.L1158P8 (SCN11A); table
e-15). Although the incidence was low, collectively,
these variants were detected in both patients with
idiopathic and diabetic peripheral neuropathy and in
both painful and nonpainful conditions (table e-15).

SCN9A haplotypes in PNRR patients. To determine
whether specific haplotypes are enriched in PNRR
patients with painful vs nonpainful peripheral neu-
ropathy, we performed haplotype analysis and com-
pared haplotype frequencies between both groups.
Specifically, 196 common SCN9A SNPs (MAF
.10%) sequenced within the PNRR patient popula-
tion were selected and phased using BEAGLE V4.1.18

One hundred eighty-five SNPs passed the Hardy-
Weinberg (HWE) filter and were used to define 14
haplotype blocks in PNRR patients, with the

Table 1 Missense variants with significant Q values compared with reference
populations

Gene Variant 1K global Q value 1K-EUR Q value EVS-EA Q value

SCN9A p.D1908G 1.30E-13Y 0.0283[ 0.4525

SCN9A p.N1245S 0.0194[ 1 0.6291

SCN9A p.V991L 1.33E-05Y 0.042[ 0.4525

SCN9A p.M932L 1.33E-05Y 0.042[ 0.4525

SCN9A p.I739V 0.0364[ 0.9584 0.7226

SCN9A p.P610T 1.33E-05[ 0.9584 0.4951

SCN9A p.S490N 1.28E-05Y 0.1457 0.1548

SCN10A p.V1073A 1.32E-09Y 4.51E-05[ 0.0323[

SCN10A p.P1045T 2.62E-05[ 0.9116 0.8329

SCN10A p.I962V 0.0145[ 1 0.9170

SCN10A p.S509P 4.26E-14Y 0.0464[ 0.0059[

SCN10A p.I206M 0.0004Y 0.9116 1

SCN10A p.R14L 0.0187[ 1 0.6513

SCN11A p.T1609I 3.65E-07Y 0.1167 0.0823

SCN11A p.V909I 0.0001[ 0.5096 0.3559

SCN11A p.G481E 0.0239[ 0.8316 1

Abbreviations: 1K 5 1000 Genomes; EUR 5 European; EVS-EA 5 Exome Variant Server,
European American.
Significant Q values are shown in bold text. The arrows indicate if the alternate allele
frequency is increased ([) or decreased (Y) in the Peripheral Neuropathy Research Registry
cohort compared with the reference population.
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majority consisting of 2 most frequently observed
haplotypes (see Methods). No significant differences
in haplotype frequencies were seen between patients
with painful or nonpainful peripheral neuropathy
(figure 3). Because haplotype block definitions are
altered by the number of SNPs and may affect fre-
quency estimates, we also used TAGGER to find tag
SNPs and redefine haplotype blocks. TAGGER
identified 30 tag SNPs that were used to define 7
haplotype blocks. Again, we observed no significant
differences in haplotypes between patients with
painful or nonpainful peripheral neuropathy (figure
e-7). Finally, we examined whether specific hap-
lotypes were enriched in the PNRR cohort compared
with the 1000 Genomes, Utah residents with
Northern and Western European ancestry (1K-CEU)
population. This reference population was selected
because of the similarity in genetic background to the
PNRR patient sample and because it provides
a greater number of intronic and exonic SNPs for
analysis than the EVS-EA population for which only
exome sequencing data are available. Phased geno-
types for 180 of the 186 PNRR SNPs were obtained
from the 1K-CEU population data set of which 69
passed HWE filtering and were used to define 8
haplotype blocks. In comparison to the 1K-CEU
reference population, there were 2 minor haplotypes

that had increased frequencies in the PNRR patient
population (p , 0.01; figure 4); however, they were
present in less than 5% of the individuals, suggesting
that these haplotypes may be functionally
inconsequential.

DISCUSSION In a cohort of 457 patients diagnosed
with peripheral neuropathy, low-frequency missense
variants in SCN9A, SCN10A, and/or SCN11A were
common, with almost 50% of subjects carrying
a variant in at least 1 gene. While the likelihood of
carrying a low-frequency variant was high, most
(;75%) of the individual variant/variant combina-
tions we identified were present in only 1 patient.
Furthermore, for each gene, missense variant allele
frequencies were not significantly different in patients
whose peripheral neuropathy was painful or non-
painful. Finally, SCN9A haplotype analysis showed
no significant differences in haplotype frequencies
based on pain status, indicating no enrichment of
specific haplotypes in patients with painful peripheral
neuropathy.

Human genetics provides compelling evidence
that NaV1.7 plays a critical role in pain. Furthermore,
identification of NaV1.9 mutations in rare genetic
pain disorders27–29 and GOF missense variants in
NaV1.7, NaV1.8, and NaV1.9 in patients with painful

Figure 2 Frequency of individual NaV1.7 missense variants in Peripheral Neuropathy Research Registry
patients

Results show the % of all patients, % of patients with painful peripheral neuropathy, or % of patients with nonpainful
peripheral neuropathy that carry each individual SCN9A low-frequency missense variant or variant combination identified.

Neurology: Genetics 5



SFN5–8 suggest that each NaV channel subtype has
the potential to contribute toward the pain experi-
enced by patients harboring mutations. To date, the
only study reporting sequencing results for all 3 genes
in the same patient cohort showed that missense var-
iants in SCN9A, SCN10A, or SCN11A were detected
in 8.7%, 3.8%, and 2.8% of patients with painful,
predominantly pure SFN, respectively.8 In compari-
son, the incidence of low-frequency missense variants
in PNRR patients was ; 3–5-fold higher, and 10%
carried variants in more than 1 gene. It is possible that
differences in sequencing platforms, sequencing
depth, and approaches to variant calling/identifica-
tion may explain these results. Of interest, we de-
tected SCN9A low-frequency variants in 26% of
PNRR patients with probable painful idiopathic
SFN based on symptoms, NCV, and abnormal skin

biopsies, a result similar to the incidence reported in
patients meeting strict clinical criteria for idiopathic
pure SFN (29%).5 However, the incidence in our
subset of PNRR patients was not different from the
complete idiopathic group (24%), patients with dia-
betes (26%), or patients with painful (25%) or non-
painful (24%) peripheral neuropathy regardless of
etiology, suggesting that SCN9A missense variants
do not occur more frequently in patients with idio-
pathic SFN.

With respect to the individual missense variants
identified in PNRR patients, many were known
SNPs, but several novel variants were also detected,
most notably in SCN11A (27% novel variants). Of
particular interest was the identification of patients
carrying known GOF variants previously reported
in patients with SFN or patients with IEM.

Figure 3 NaV1.7 haplotypes in Peripheral Neuropathy Research Registry patients

Results show the frequency of individual haplotypes, within 14 different haplotype blocks, in Peripheral Neuropathy Research Registry patients with painful
or nonpainful peripheral neuropathy.

6 Neurology: Genetics



Collectively, the incidence of carrying a known GOF
missense variant in the PNRR cohort was very low,
and they were present in some patients with a non-
painful phenotype. These results contrast with those
reported in a small group of patients with strictly
defined idiopathic SFN where all 8 SCN9A missense
variants identified conferred GOF effects in cell-based
electrophysiology assays.5 Thus, while the likelihood
of carrying a low-frequency SCN9A missense variant
was similar (see above), previous results suggest an

enrichment of GOF variants in patients with idio-
pathic SFN, which was not apparent in PNRR
peripheral neuropathy patients. It should be acknowl-
edged that very few PNRR patients met criteria for
probable idiopathic, pure SFN and that the biological
impact of most of the missense variants we identified
is unknown. Further investigation of patients with
strictly defined pure idiopathic SFN is therefore
important, given the potential attractiveness of this
clinical population for testing of novel NaV1.7 agents.

To compare missense variant allele frequencies in
PNRR patients with reference populations, we
selected the EVS-EA population for our primary anal-
ysis.15 The EVS database contains allele frequency
information for exome sequencing variants identified
in 4,300 Americans of European decent, a population
closest in ancestry to the PNRR cohort.15 While no
differences were noted for SCN9A or SCN11A, a sig-
nificant increase in the alternate allele frequency of
the SCN10A variants p.V1073A and p.S509P was
seen in PNRR patients. While the impact of p.
S509P is unknown, the p.V1073A common variant
has a GOF effect, and expression of the A1073 pro-
tein produces larger peak currents, slower fast inacti-
vation, and larger persistent currents compared with
V1073 in cell-based electrophysiology assays.30,31 Of
interest, genetic association studies also report that
rs6795970 (p.V1073A) is strongly associated with
prolongation of the PR interval and QRS complex
of the electrocardiogram,32 atrial fibrillation,31 and
Brugada syndrome.30 It should be noted that the
EVS-EA population represents a mixture of pheno-
types including controls, specific cardiac and lung
diseases, and specific traits (low-density lipoprotein
and blood pressure). However, p.V1073A and p.
S509P alternate allele frequencies were also higher
in PNRR patients compared with the 1000 Genomes
EUR population comprising 503 self-reported
healthy individuals. These results suggest an associa-
tion of p.V1073A and p.S509P with the peripheral
neuropathy phenotype, although there was no asso-
ciation with pain status within the PNRR patient
group itself.

Previous studies have also reported an association
of the SCN9A missense variants p.D1908G and p.
V991L/p.M932L with neuropathic pain in patients
with painful diabetic peripheral neuropathy.20 We
also detected these variants in PNRR patients; how-
ever, we did not see any difference in allele frequen-
cies compared with the EVS-EA reference
population. It should be noted that patients with
diabetic painful distal polyneuropathy comprised on-
ly 30% of the PNRR population, while the previous
study focused on patients with diabetes enrolled in
clinical trials with strict inclusion criteria including
pain intensity scores. In addition, the reference

Figure 4 NaV1.7 haplotype comparison with a reference population

Results show the frequency of individual haplotypes, within 8 different haplotype blocks, in
Peripheral Neuropathy Research Registry (PNRR) patients or the 1000 Genomes CEU pop-
ulation. Results were analyzed by the chi-square test, *p , 0.01.
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population selected was important; we consider EVS-
EA to be the most appropriate comparator; however,
a significant difference in the alternate allele fre-
quency was observed when compared with the 1K-
EUR population. Finally, with respect to the 1K
global population, we consider the marked hetero-
geneity in MAF across the different ethnic groups
comprising this population to be the likely explana-
tion for both the increased number of variants and
discrepancies in the direction of the frequency
change observed when compared with results from
the EVS-EA analysis.

Results from this study showed marked allelic het-
erogeneity in SCN9A, SCN10A, and SCN11A in
patients with idiopathic or diabetic distal polyneur-
opathy. While NaV1.7 inhibitors have the potential
for the treatment of peripheral neuropathic pain,
identification of a specific, genetically defined sub-
population for drug testing in patients with peripheral
neuropathy appears unrealistic. Additional factors,
beyond expression of an NaV channel missense vari-
ant, appear to be important because there was no
relationship between the presence of missense var-
iants and pain state in PNRR patients. This approach
may have utility for the exploration of other disease-
related genes and the identification of druggable
molecular targets in patients with neuropathic pain.
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