We previously discovered a frameshift variant in ARHGEF28, encoding rho guanine nucleotide exchange factor (RGNEF), in a patient with amyotrophic lateral sclerosis (ALS) following our observation of RGNEF cytoplasmic inclusions in the patient’s motor neurons. This variant was subsequently observed in a Chinese cohort of patients with ALS and in ALS-discordant identical twins. Herein, we describe the expanded analyses performed on the family of our index patient, who carries both ARHGEF28 p.Lys280Metfs40Ter and a C9orf72 repeat expansion. We performed neuromuscular examination and screened for cognitive impairment using the Montreal Cognitive Assessment on 24 family members. We also screened for the C9orf72 repeat expansion. Of the identified carriers, 2 died with a diagnosis of ALS. It is unknown whether the other 6 carriers, who showed no neurologic abnormalities at the time of evaluation, will eventually develop symptoms of disease. We also used ONDRISeq to identify additional variation in known ALS genes in III-2 and III-5, with no further variants detected. We postulate that ARHGEF28 p.Lys280Metfs40Ter may modify the incremental neurodegeneration risk present in individuals with a C9orf72 expansion.

Results. Clinical characteristics. III-2 presented with left upper extremity weakness at age 60 and later developed features of bulbar dysfunction, diffuse limb wasting and weakness, and pathologically brisk reflexes (table e-1 at Neurology.org/ng). Given the history of ALS in the family, the diagnosis was definite familial ALS using the El Escorial criteria. The postmortem neuropathology confirmed the diagnosis in the absence of frontotemporal lobar degeneration.

Her brothers, III-3 and III-5, were also diagnosed with ALS but presented at a much younger age (table e-1). III-3 presented with bilateral upper extremity weakness as well as limb wasting. Similar to III-2, the first symptomology observed in III-5 was weakness in the left upper extremity. He later developed bulbar dysfunction, limb wasting, and pyramidal weakness. The 2 surviving siblings, III-7 and III-9, do not have any features suggestive of ALS. There is currently no individual affected with ALS in the subsequent generation; however, all are younger than the typical age at onset (table e-2).

Genetic variants in patients with ALS. We genotyped family members for ARHGEF28 p.Lys280Metfs40Ter and observed an additional 8 heterozygous carriers (figures e-1 and e-2). Of note, we also identified ARHGEF28 p.Lys280Metfs40Ter in 2 unrelated spouses (IV-4 and IV-7), despite the rarity of the ARHGEF28 variant based on its absence from public databases such as the Exome Aggregation Consortium, Genome Aggregation Database, Human Gene Mutation Database, and ClinVar, and from the Amyotrophic Lateral Sclerosis Online Genetics Database.

DNA of participants was also tested for the C9orf72 repeat expansion as previously described (table e-1). We identified 7 additional C9orf72 expansion carriers, and these results were confirmed by the Clinical Laboratory Improvement Amendments–certified laboratories. Of the identified carriers, 2 died with a diagnosis of ALS. It is unknown whether the other 6 carriers, who showed no neurologic abnormalities at the time of evaluation, will eventually develop symptoms of disease. We also used ONDRISeq to identify additional variation in known ALS genes in III-2 and III-5, with no further variants identified.

C9orf72 dipeptide repeat protein immunostaining. Cerebellar sections from III-2 and III-5 were obtained from archived neuropathologic specimens and immunostained for dipeptide repeat proteins [poly(GP), poly(GA), and poly(GR)] produced from C9orf72 G4C2 expansions through repeat associated non-ATG translation. In each instance, dipeptide repeat proteins were observed (figure 1).

Discussion. We expand the analyses in the ALS family described in our previous report. We previously identified individuals with ALS who have RGNEF pathology, which are cytoplasmic inclusions of RGNEF (encoded by ARHGEF28) in motor neurons, as well as a C9orf72 expansion. Of interest, we observed individuals with ALS who have RGNEF pathology but without a C9orf72 expansion, which suggests that RGNEF pathology may be sufficient to cause ALS or there may be other as yet uncharacterized variants.
pathogenic factors involved. Although ARHGEF28 p.Lys280Metfs40Ter is present in currently unaffected individuals, which may suggest that the variant is benign, it is more likely that the variant modifies disease risk, as we have previously observed RGNEF neuronal cytoplasmic inclusions in spinal cord motor neurons of the index case (III-5) and in other cases. In addition, the variant may also reflect common ancestral origins as both unrelated individuals reported that they are from the same Northern Netherlands region as other members of the family. Based on the location of the mutation (amino acid 280 of 1731) leading to the eventual termination of the RGNEF polypeptide, it is likely the variant affects RGNEF function. Whether the disease mechanism is haploinsufficiency or cellular toxicity is unclear.

While it is presently unknown whether carriers will eventually develop symptoms of disease, we postulate that double heterozygotes of both the C9orf72 expansion and ARHGEF28 p.Lys280Metfs40Ter may be at a greater risk of developing ALS earlier than individuals who only carry a C9orf72 expansion. Given the limited sample size, precludes us from definitively determining the effect of the ARHGEF28 variant; we will investigate these variants in vitro to evaluate their dual effect on motor neurons. In addition, we plan to sequence a larger cohort of ALS cases to determine the frequency of ARHGEF28 variation.

From the Department of Biochemistry (S.M.K.F., R.A.H.), Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Neuroscience (T.F.G., L.P.), Mayo Clinic, Jacksonville, FL; and Department of Clinical Neurological Sciences (M.J.S.), Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.

Acknowledgment: The authors are grateful to the participating families in the study and to Mrs. Ann Rose for assistance in sample acquisition. They also thank Dr. Zhang for experimental guidance and Ms. Castanedes-Casey and Dr. Dickson for assistance with the immunohistochemistry assays.

Study funding: This research was supported by the Canadian Institutes of Health Research (CIHR), ALS Canada, and the McFeat Family Fund. S.M.K. Farhan was supported by the CIHR Frederick Banting and Charles Best Canada Graduate Scholarship.

Disclosure: S.M.K. Farhan reports no disclosures. T.F. Gendron has received speaker honoraria from Johns Hopkins and the NIH; holds a patent for Methods and materials for detecting poly(GP) proteins in tissues from C9ORF72 repeat expansion carriers; has received research support from the NIH, the ALS Association, and the Muscular Dystrophy Association; and receives license fee payments for C9ORF72 repeat expansion constructs and viruses and antibodies against C9ORF72 dipeptide repeat proteins. L.P. Petrucelli has served on the scientific advisory boards of Denali and Biogen; has served on the editorial boards of the Journal of Neuroscience, Molecular Neurodegeneration, and PLoS ONE; holds a patent for “C9orf72 antibody as a Diagnostic Test for C9orf72 Mutation Carriers. Development of an assay to detect C9orf72 RAN translation products in CSF/blood”; has received research support from Lundbeck, Biogen, the NIH/NINDS, the Mayo Clinic Foundation, the Amyotrophic Lateral Sclerosis Association, Robert Packard Center for ALS Research, and the Dr. Jennifer A. and David E. Richey ALS Research Foundation.
for ALS Research at Johns Hopkins, Target ALS, and the Association for Frontotemporal Degeneration; receives license fee payments from Lundbeck, Biogen, and Denali; and receives royalty payments for licensing of TDP-43 antibody. R.A. Hégele reports no disclosures.

M.J. Strong serves on the editorial board of Amyotrophic Lateral Sclerosis and receives research support from the Canadian Institutes of Health Research. Go to Neurology.org/ng for full disclosure forms.

The Article Processing Charge was funded by the authors.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Received April 27, 2017. Accepted in final form August 7, 2017.

Correspondence to Dr. Strong: Michael.Strong@schulich.uwo.ca

ARHGEF28 p.Lys280Metfs40Ter in an amyotrophic lateral sclerosis family with a C9orf72 expansion
Neurol Genet 2017;3;
DOI 10.1212/NXG.0000000000000190

This information is current as of September 22, 2017
<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://ng.neurology.org/content/3/5/e190.full.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Supplementary material can be found at: http://ng.neurology.org/content/suppl/2017/09/22/3.5.e190.DC1</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 6 articles, 1 of which you can access for free at: http://ng.neurology.org/content/3/5/e190.full.html##ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>All Clinical Neurology http://ng.neurology.org/cgi/collection/all_clinical_neurology</td>
</tr>
<tr>
<td></td>
<td>All Genetics http://ng.neurology.org/cgi/collection/all_genetics</td>
</tr>
<tr>
<td></td>
<td>Amyotrophic lateral sclerosis http://ng.neurology.org/cgi/collection/amyotrophic_lateral_sclerosis_</td>
</tr>
<tr>
<td></td>
<td>Clinical neurology examination http://ng.neurology.org/cgi/collection/clinical_neurology_examination</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://ng.neurology.org/misc/about.xhtml#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://ng.neurology.org/misc/addir.xhtml#reprintsus</td>
</tr>
</tbody>
</table>

Neurol Genet is an official journal of the American Academy of Neurology. Published since April 2015, it is an open-access, online-only, continuous publication journal. Copyright Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Online ISSN: 2376-7839.