Genetic analysis for a shared biological basis between migraine and coronary artery disease

ABSTRACT

Objective: To apply genetic analysis of genome-wide association data to study the extent and nature of a shared biological basis between migraine and coronary artery disease (CAD).

Methods: Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014 controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between the 2 phenotypes and by querying known genome-wide significant loci.

Results: We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine subtype, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin homeostasis (GIP).

Conclusions: The results suggest that shared biological processes contribute to risk of migraine and CAD, but surprisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understanding the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our understanding of both disorders. *Neur Genet 2015;1:e10; doi: 10.1212/NXG.0000000000000010*

GLOSSARY

CAD = coronary artery disease; CARDioGRAM = Coronary ARtery Disease Genome-Wide Replication And Meta-Analysis; CPSM = Cross-Phenotype Spatial Mapping; GWAS = genome-wide association studies; IHGC = International Headache Genetics Consortium; LD = linkage disequilibrium; MA = migraine with aura; MO = migraine without aura; SNP = single nucleotide polymorphism.

Migraine affects 19% of women and 11% of men worldwide and causes more years lost to disability than any other neurologic disorder.1,2 In about one-third of patients, headache attacks are preceded by transient neurologic symptoms termed migraine aura, and migraine with and without aura (MA and MO, respectively) are believed to have a partially distinct pathogenic basis.3 It has long been assumed that the vascular system is involved in migraine pathogenesis, but little is known of the specific biological processes involved, and the relative importance of neuronal and vascular mechanisms remains controversial.3–6 Supporting a vascular basis, epidemiologic studies have found an increased risk for stroke among patients with migraine, most pronounced for MA.7 Some recent studies indicate a similar risk increase for coronary artery disease (CAD), the most common vascular disorder, although the association is less certain than for stroke.8–11 This raises the question of whether migraine and cardiovascular disease have a shared biological basis.

Both migraine and CAD have a strong genetic determination, and recent genome-wide association studies (GWAS) have identified risk variants for each. If migraine and CAD have a shared biological basis, one might anticipate that they will also share genetic variants that affect their risk. In this study, we utilized data from 2 large-scale nonoverlapping GWAS meta-analyses of migraine (the International Headache Genetics Consortium, IHGC)12 and CAD (Coronary ARtery Disease Genome-Wide Replication And Meta-Analysis, CARDioGRAM)13 to quantify shared genetic risk.

METHODS Study cohorts. Summary statistics (p value and effect size) at single nucleotide polymorphism (SNP) level from 2 recently performed meta-analyses of genome-wide association data on migraine (IHGC)12 and CAD (CARDioGRAM)13 were used in...
Sekar Kathiresan, MD
Terho Lehtimäki, MD
Ruth McPherson, PhD
Winfried März, PhD
Dale R. Nyholt, PhD
Christopher J. O’Donnell, MD
Lydia Quaye, PhD
Daniel I. Chasman, PhD
Maija Wessman, PhD
Cornelia van Duijn, PhD
Arn M.J.M. van den Maagdenberg, PhD
Maagdenberg, PhD
Nurlu Raitakari, PhD
Robert Roberts, MD
Heribert Schunkert, MD
Markus Schürks, MD
Alexandre F.R. Stewart, PhD
Gisela M. Terwindt, PhD
Unnur Thorsteindottir, PhD
Arn M.J.M. van den Maagdenberg, PhD
Cornelia van Duijn, PhD
Maija Wessman, PhD
Tobias Kurth, MD
Christian Kubisch, MD
Martin Dichgans, MD
Daniel I. Chasman, PhD
Chris Cottingham, PhD
John-Anker Zwart, MD
Nilesh J. Samani, FRCP
Aarno Palotie, MD
For the CARDIoGRAM Consortium and the International Headache Genetics Consortium

Correspondence to
Dr. Palotie:
aarno@broadinstitute.org

See editorial

Supplemental data
at Neurology.org/ng

the present study. After excluding overlapping samples, the 2 studies consisted of 19,981 cases with migraine vs 56,667 controls, and 21,076 cases with CAD vs 63,014 controls. A proportion of the migraine cases were phenotyped in sufficient detail to allow subclassification into MO (6,413 cases, 32,745 controls) and MA (4,940 cases, 37,557 controls). In addition, individual-level genotype data were available for a proportion of the migraine cohorts (6,350 migraine cases vs 15,069 controls from the German MA and MO cohorts, Dutch LUMINA study, Finnish MA study, and the HUNT Study, Norway). All data sets were imputed by using the HapMap release 21 or 22 as reference. An overview of the study design and the included cohorts is given in figure 1. A detailed description of samples, genotyping, and association analyses is given in e-Methods, tables e-1 and e-2, and figure e-1 at Neurology.org/ng.

Standard protocol approvals, registrations, and patient consents. For all study cohorts, participation was based on informed consent. Each study was approved by local research ethics boards in the country where the study cohort was collected. See original publications of the 2 studies for full details of ethics and consent procedures.1,11,13

Analytic approach. Evaluating extent of overlapping signals. To assess whether more association signals were shared between the migraine and CAD studies than would be expected by chance, we used a set of 2,342,101 overlapping SNPs that were directly typed or imputed in both studies. Following the same procedure as described in a previous study,14 we first sorted the SNPs by association p value to migraine. Starting from the top of the list, all subsequent SNPs with linkage disequilibrium (LD) $R^2 > 0.05$ (based on HapMap CEU release 27) were removed. This process was repeated until a set of 92,654 SNPs in approximate linkage equilibrium remained. For each of 5 separate p value cutoffs (1 \times 10$^{-3}$, 1 \times 10$^{-4}$, 1 \times 10$^{-5}$, 1 \times 10$^{-6}$, and 1 \times 10$^{-7}$), we counted the number of SNPs above and below the cutoff in each of the 2 studies, resulting in one 2 \times 2 table for each p value cutoff. The Fisher exact test was used to estimate deviation from the expected distribution, and false discovery rate correction was performed on all 6 tests using the p.adjust function in R.13 A corrected Fisher p < 0.01 was taken to indicate an excess of overlapping signals. In order to obtain a more robust estimate of the significance of the observed overlap, this was also assessed through permutations. In each permutation cycle, the relation of p values to SNPs was randomized within each of the LD-pruned migraine and CAD data sets, and a Fisher p for overlap was calculated for each p value cutoff. We generated 100,000 permutations to produce an empirical null distribution of p values.

In an equivalent manner, secondary analyses were performed for MO (83,373 overlapping SNPs after LD pruning) and MA (88,031 overlapping SNPs after LD pruning).

Polygenic risk score analysis. If shared genetic risk variants are in part or fully responsible for comorbidity between migraine and CAD, we would expect an accumulation of CAD risk alleles in migraineurs. To test this hypothesis, we used the 6 migraine cohorts in which individual-level genotype data were available for analysis (6,350 migraineurs vs 15,069 controls; figure 1). For each migraine case or control, we calculated a CAD polygenic risk score based on a previously published method.15 We first generated 3 sets of CAD risk SNPs by selecting SNPs with strong ($p < 5 \times 10^{-6}$; 149 SNPs), moderate ($p < 1 \times 10^{-4}$; 1,631 SNPs), or weak ($p < 1 \times 10^{-5}$; 36,384 SNPs) association to CAD among the 2,342,101 SNPs with information in both migraine and CAD studies. As suggested in the original description of the method,16 the analysis was based on non-LD-pruned SNP sets in order to optimize sensitivity. Using each set of CAD risk SNPs, we calculated a per-individual CAD polygenic risk score by summing the number of CAD risk alleles (or expected allele counts for imputed SNPs), each weighted by the log odds ratio from the CAD study. We subsequently assessed whether CAD polygenic risk score was associated with migraine status by applying a logistic regression model of the effect of CAD polygenic risk score (continuous) on migraine status (case, control), adjusted for sex and dummy-coded covariates representing the 6 individual migraine study cohorts.

Identifying shared risk loci. In order to identify shared risk loci between migraine and CAD, we applied a novel method, Cross-Phenotype Spatial Mapping (CPSM; see e-Methods for an overview). This method compares 2 sets of p values from GWAS in order to find groups of SNPs at which they are correlated and thus identify shared patterns of association. We applied this method to the 2,342,101 overlapping SNPs from the migraine and CAD studies and selected genomic regions with signal above the 99.95th percentile of 1,000 permutations for further analysis. Potential effects of the shared association loci on regional gene expression (cis effect) were examined using an existing expression quantitative trait locus database from peripheral blood (e-Methods).

Lastly, we analyzed loci with previously reported genome-wide significant association to migraine or CAD (summarized in the original publications).1,12,13 The lead SNP at each locus was cross-analyzed for association to the other phenotype, Bonferroni correcting for the number of SNPs tested. All 13 of 13 reported migraine loci and 22 of 25 reported CAD loci were available in our data set and could be tested (excluding CAD risk SNPs rs17465637, rs1746048, and rs12413409).

RESULTS Comparing nominally significant SNPs from the migraine and CAD GWAS, we found an overlap of association signals in excess of what would be expected by chance (table 1). An overlap of signals was seen for SNPs with p values $\leq 1 \times 10^{-2}$, 1×10^{-4}, and 1×10^{-6}. This was supported by permutation testing, which indicated a sharing of association signals at p value cutoff 1×10^{-3} as well. For reference, the full list of SNPs with association p value $\leq 1 \times 10^{-2}$ to both CAD and migraine is given in table e-3. Secondary analyses by migraine subtype revealed an overlap of association signals between MO and CAD at all p value cutoffs (1×10^{-2}, 1×10^{-3}, 1×10^{-4}, 1×10^{-5}, and 1×10^{-6}), while no overlap was seen between MA and CAD at any of the p value cutoffs. The direction of effect for overlapping association signals did not consistently agree between migraine and CAD, as evidenced by nonsignificant binomial p values for concordance (table 1).

To examine this further, the second analysis compared the load of genetic risk variants for CAD between migraineurs and controls, using individual-level data. The results indicated that a high CAD polygenic risk score was associated with a reduced risk of migraine (figure 2, further details in table e-4). For migraine overall, this association was seen for only the moderate CAD risk SNP set (p = 0.007). Secondary analyses revealed a similar, but more pronounced, association between CAD polygenic risk score and...
MO ($p = 1.5 \times 10^{-4}$ and 5.1×10^{-4} for the moderate and strong CAD risk SNP sets, respectively). No association was seen for MA. In the analysis of the weak CAD risk SNP set, there was no association to CAD genetic risk score for either migraine category, indicating that the observed associations were driven by a fairly limited number of loci that are at least moderately associated with CAD. These findings were consistent across men and women (figure e-2) and across individual independent cohorts within the same migraine subtype (figure e-3).

CPSM yielded 16 loci that overlapped between migraine and CAD (table 2; figure e-4). Details of the most significant migraine and CAD SNPs at each locus are given in table e-5. The strongest evidence of shared association was seen at 6p24 (locus no. 2), where both CAD and migraine showed genome-wide significant signals within the PHACTR1 gene (CAD: rs4714955, $p = 9.8 \times 10^{-11}$; migraine: rs9349379, $p = 5.9 \times 10^{-9}$). The second strongest overlapping signal was on 17q21 (locus no. 2), where the lead CAD SNP (rs46522, $p = 2.6 \times 10^{-7}$) was intragenic in UBE2Z, whereas the lead migraine SNP (rs11079844, $p = 3.1 \times 10^{-9}$) was intergenic between SNF8 and GIP. It is interesting that both lead SNPs are in high LD ($r^2 > 0.9$) with 2 functional variants in GIP: Ser103Gly (rs2291725) and a splice site variant (rs2291726) that is predicted to lead to a prematurely truncated transcript (table e-6). The locus was also found to have a potential effect on the expression level of UBE2Z (table e-7). Lead SNPs in 5 loci were in high LD ($r^2 > 0.8$) with nonsynonymous or splice site variants in nearby genes (table e-6). Ten of the 16 loci showed opposite direction of effect for migraine and CAD. In the secondary analyses, 12 of the 16 lead migraine SNPs had a lower association p value in MO than in MA (2-tailed binomial $p = 0.08$), and all 16 SNPs
had the same effect direction in each of the 2 migraine subtypes. Local Manhattan plots and covariance plots for the identified loci are given in figure e-4.

When considering previously reported risk loci for migraine and CAD, 3 CAD risk SNPs were associated to migraine at study-wide significance, and 2 migraine risk SNPs were associated to CAD (table 3). These correspond to loci no. 1, 2, 3, 11, and 14 as identified by the CPSM method and corroborate the evidence for shared genetic risk at these loci.

DISCUSSION

In this study, we used data from 2 recently performed large-scale nonoverlapping GWAS to examine shared genetic risk between migraine and CAD. We found that association signals overlapped in excess of what would be expected by chance. Stratifying by migraine subtype further revealed that MO and MA behaved differently. MO had a genetic overlap with CAD, whereas MA did not. These results are unexpected, given the epidemiologic evidence that comorbidity with CAD is more common in MA than MO.

Patients with MA were found to have a 2-fold increased risk for CAD8, which is consistent with previous findings9,11 although one cross-sectional study failed to find an association between

Table 1 Analysis of the extent of overlapping signals between migraine and CAD

<table>
<thead>
<tr>
<th>Signal definition (p value cutoff)</th>
<th>Overlapping SNPs</th>
<th>p Value for overlap (Fisher exact test)a</th>
<th>p Value for overlap (permutation test)b</th>
<th>Concordance of overlapping SNPsb</th>
<th>Binomial p value for concordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>All migraine (total no. SNPs: 92,654)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-2</td>
<td>146</td>
<td>1.1E-05c</td>
<td>6.0E-05</td>
<td>0.534</td>
<td>0.18</td>
</tr>
<tr>
<td>1E-3</td>
<td>7</td>
<td>0.099</td>
<td>0.056</td>
<td>0.571</td>
<td>0.23</td>
</tr>
<tr>
<td>1E-4</td>
<td>2</td>
<td>9.3E-03c</td>
<td>7.9E-03</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>1E-5</td>
<td>1</td>
<td>0.014</td>
<td>2.1E-04</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>1E-6</td>
<td>1</td>
<td>5.2E-03c</td>
<td>3.5E-03</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>Migraine without aura (total no. SNPs: 83,373)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-2</td>
<td>113</td>
<td>1.6E-04c</td>
<td>1.5E-05</td>
<td>0.510</td>
<td>0.87</td>
</tr>
<tr>
<td>1E-3</td>
<td>8</td>
<td>1.3E-03c</td>
<td>1.1E-04</td>
<td>0.442</td>
<td>0.86</td>
</tr>
<tr>
<td>1E-4</td>
<td>3</td>
<td>2.0E-04c</td>
<td>1.5E-05</td>
<td>0.250</td>
<td>0.88</td>
</tr>
<tr>
<td>1E-5</td>
<td>1</td>
<td>8.5E-03c</td>
<td>1.5E-05</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>1E-6</td>
<td>1</td>
<td>3.0E-03c</td>
<td>1.5E-05</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>Migraine with aura (total no. SNPs: 88,031)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E-2</td>
<td>107</td>
<td>0.13</td>
<td>0.11</td>
<td>0.523</td>
<td>0.28</td>
</tr>
<tr>
<td>1E-3</td>
<td>1</td>
<td>1.0</td>
<td>0.64</td>
<td>0.523</td>
<td>0.50</td>
</tr>
<tr>
<td>1E-4</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1E-5</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1E-6</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviations: CAD = coronary artery disease; NA = not applicable; SNP = single nucleotide polymorphism.

aFalse discovery rate corrected p values.

bProportion of overlapping association signals having the same direction of effect in migraine and CAD.

$^c p < 0.01$.

Figure 2 Association between coronary artery disease polygenic risk score and the presence of migraine

Results are given as odds ratios with 95% confidence intervals. Separate lines are shown for all migraine (blue), migraine without aura (green), and migraine with aura (red). The coronary artery disease (CAD) polygenic risk score was calculated based on single nucleotide polymorphisms (SNPs) with weak ($p < 1 \times 10^{-2}$), moderate ($p < 1 \times 10^{-4}$), or strong ($p < 5 \times 10^{-8}$) association to CAD in the Coronary ARtery Disease Genome-Wide Replication And Meta-Analysis study.
Table 2 Overlapping association loci between migraine and CAD as identified by CPSM analysis

<table>
<thead>
<tr>
<th>Locus no.</th>
<th>Chr band</th>
<th>Position (Mb)⁵</th>
<th>Locus</th>
<th>Peak SNP</th>
<th>Peak height</th>
<th>Genes within locus⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6q24</td>
<td>12.929</td>
<td>13.187</td>
<td>257.386</td>
<td>rs7454157</td>
<td>25.2</td>
</tr>
<tr>
<td>2</td>
<td>17q21</td>
<td>44.282</td>
<td>44.512</td>
<td>230.813</td>
<td>rs12601858</td>
<td>13.2</td>
</tr>
<tr>
<td>3</td>
<td>6q16</td>
<td>96.917</td>
<td>97.188</td>
<td>271.548</td>
<td>rs12529248</td>
<td>7.8</td>
</tr>
<tr>
<td>4</td>
<td>12q24</td>
<td>110.241</td>
<td>111.064</td>
<td>823.633</td>
<td>rs7962138</td>
<td>7.4</td>
</tr>
<tr>
<td>5</td>
<td>17p11</td>
<td>17.603</td>
<td>17.992</td>
<td>389.086</td>
<td>rs9890341</td>
<td>6.9</td>
</tr>
<tr>
<td>6</td>
<td>16q23</td>
<td>73.827</td>
<td>74.094</td>
<td>266.738</td>
<td>rs4888396</td>
<td>5.2</td>
</tr>
<tr>
<td>7</td>
<td>10q24</td>
<td>104.823</td>
<td>105.178</td>
<td>354.585</td>
<td>rs7067970</td>
<td>5.1</td>
</tr>
<tr>
<td>8</td>
<td>3q23</td>
<td>303.375</td>
<td>303.522</td>
<td>45.53</td>
<td>rs6435169</td>
<td>4.8</td>
</tr>
<tr>
<td>9</td>
<td>10q24</td>
<td>104.569</td>
<td>104.785</td>
<td>216.416</td>
<td>rs1538204</td>
<td>4.1</td>
</tr>
<tr>
<td>10</td>
<td>6q13</td>
<td>72.182</td>
<td>72.403</td>
<td>220.605</td>
<td>rs12207084</td>
<td>3.1</td>
</tr>
<tr>
<td>11</td>
<td>8q21</td>
<td>89.53</td>
<td>89.69</td>
<td>160.492</td>
<td>rs1352317</td>
<td>3.1</td>
</tr>
<tr>
<td>12</td>
<td>9q13</td>
<td>46.543</td>
<td>46.664</td>
<td>120.921</td>
<td>rs3810174</td>
<td>2.9</td>
</tr>
<tr>
<td>13</td>
<td>12q24</td>
<td>109.501</td>
<td>109.714</td>
<td>213.015</td>
<td>rs16940933</td>
<td>2.8</td>
</tr>
<tr>
<td>14</td>
<td>8q21</td>
<td>89.382</td>
<td>89.525</td>
<td>143.754</td>
<td>rs6984041</td>
<td>2.7</td>
</tr>
<tr>
<td>15</td>
<td>16q24</td>
<td>88.099</td>
<td>88.191</td>
<td>91.257</td>
<td>rs17775174</td>
<td>2.6</td>
</tr>
<tr>
<td>16</td>
<td>9p21</td>
<td>23.429</td>
<td>23.505</td>
<td>75.25</td>
<td>rs10811931</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Abbreviations: Chr = chromosome; CAD = coronary artery disease; CPSM = Cross-Phenotype Spatial Mapping; peak height = value of covariance signal at apex of the peak; SNP = single nucleotide polymorphism.

*Sorted by decreasing peak height.

¹Positions refer to build NCBI36/hg18.

²RefSeq genes.

CAD and any migraine subtype.¹⁹ Studies not differentiating on migraine subtype have been less conclusive, with some⁵,⁹,¹⁰,¹¹ but not others,¹²,¹³ indicating an increased risk of CAD related to migraine overall.

For MO, we found a clear overlap of association signals with CAD, whichever p value cutoff was used to define signals. Intriguingly, the impact was in the opposite direction, in that patients with MO had a lower load of CAD risk alleles than migraine-free controls. This association seemed to be driven by a limited number of loci. Only a proportion of the included migraine patients were phenotyped in sufficient detail to allow subclassification into MA or MO. When using the considerably larger set of all migraine patients, a similar association was seen for MO, likely driven by this migraine subtype. While the results suggest that there are shared common risk variants between migraine and CAD, they do not indicate that these variants explain comorbidity between the 2 disorders.

The opposite direction of effect for some of the loci is consistent with a recent GWAS in which the migraine and CAD risk SNP rs9349379 (in PHACTRI) was associated with cervical artery dissection, with effect in the same direction as for migraine but opposite of CAD.²³ Two further migraine SNPs showed evidence of association to cervical artery dissection with the same effect direction as for migraine (rs11172113 in LRPI and rs13208321 in FHL5, the latter identified as locus 3 in the current study) but opposite direction for CAD.

The significant sharing of risk loci between migraine and CAD may reflect that they involve some of the same biological processes. Experimental studies will be needed to clarify this and whether the shared risk loci can give information on vascular mechanisms involved in migraine pathogenesis.

The lack of overlapping association signals between MA and CAD may indicate that the 2 disorders have separate and nonrelated genetic backgrounds. However, it may also result from insufficient power to detect shared common genetic risk factors for this migraine subtype. This is consistent with the relative failure so far in identifying common risk variants for MA; despite at least as high heritability and comparable study sample sizes, only one genome-wide significant locus has been identified.
Table 3 Cross-analysis of loci previously reported to show genome-wide significant association with migraine or CAD

<table>
<thead>
<tr>
<th>Lead SNP Chrs Chr band Reported gene(s)</th>
<th>p Value</th>
<th>Odds ratio (SE)</th>
<th>Dir. a</th>
<th>p Value</th>
<th>Odds ratio (SE)</th>
<th>Dir. a</th>
<th>p Value</th>
<th>Odds ratio (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs13010048</td>
<td>1q24</td>
<td>PHACTR1</td>
<td>2.52E-10</td>
<td>1.17 (0.029)</td>
<td>+</td>
<td>2.33E-09</td>
<td>1.09 (0.031)</td>
<td>+</td>
</tr>
<tr>
<td>rs12526453</td>
<td>6p24</td>
<td>MMP16</td>
<td>8.97E-08</td>
<td>1.1 (0.019)</td>
<td>1.96E-03</td>
<td>1.05 (0.017)</td>
<td>+</td>
<td>1.41E-10</td>
</tr>
<tr>
<td>rs11079844</td>
<td>11q13</td>
<td>ATP5G1</td>
<td>9.72E-09</td>
<td>1.09 (0.017)</td>
<td>-</td>
<td>8.18E-09</td>
<td>0.94 (0.013)</td>
<td></td>
</tr>
<tr>
<td>rs11079844</td>
<td>17q21</td>
<td>UBE2Z</td>
<td>2.58E-07</td>
<td>0.90 (0.013)</td>
<td>1.42E-04</td>
<td>1.05 (0.013)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Chr = chromosome; CAD = coronary artery disease; SNP = single nucleotide polymorphism.

Only SNPs with significant association with either phenotype after Bonferroni correction are shown. *p < 0.0038 for previously identified loci in the CAD sample, and *p < 0.0023 for previously reported loci in the migraine sample.

*Significant cross-phenotype p value.

**Significant cross-phenotype p value.

Strengths of this study include the use of large-scale nonoverlapping GWAS of migraine and CAD, stringent quality control measures, and sufficiently rich phenotyping to allow secondary analyses of the 2 migraine subtypes. Nevertheless, some limitations should also be acknowledged. First, only summary statistics and not individual-level genotype data were available for the majority of the samples included in this study. Second, in each included cohort, phenotype information was available on only migraine or CAD, not both. This prevented us from performing for MA, compared to 9 for MO. It is possible that MA is a more heterogeneous disorder or is influenced by rare and low-frequency variants, and it is also associated with cardiovascular disease.

Six of the overlapping loci have previously been associated with CAD at genome-wide significant levels (loci 1, 2, 4, 7, 8, and 9 of table 2), and with migraine (loci 1 and 3). The strongest overlapping region (locus 1) is entirely intragenic in PHACTR1 (which encodes phosphatase and actin regulator 1 protein). This locus is associated with both migraine and CAD at genome-wide significant levels in the current and previous studies and has also been associated with coronary artery calcification and stroke. PHACTR1 is highly expressed in the brain, and its transcript is an important regulator of synaptic activity and dendritic morphology through the control of protein phosphatase 1 and actin binding. More recently, PHACTR1 has been identified as a key regulator of endothelial function, including endothelial cell survival and angiogenesis, and it is associated with altered vasomotor tone. Both endothelial and vasomotor dysfunctions have been implicated in migraine, and this locus offers a potential focus for future studies. Alternatively, the pleiotropic effects of this gene on both synaptic and vascular functions may give rise to independent causal pathways for the 2 disorders.

The second strongest overlapping region (locus 2) is a previously identified risk locus for CAD. The lead CAD (rs46522) and migraine variants (rs11079844) are in strong LD (r^2 = 0.94), and both are in strong LD (r^2 > 0.90) with 2 potentially functional variants in GIP (which encodes gastric inhibitory polypeptide). GIP regulates glucose-induced insulin release from pancreatic B-cells and helps re-sensitize the insulin response. It is also expressed in the brain, where it may be involved in proliferation of neuronal progenitor cells. Whether GIP is involved in the observed tendency for insulin resistance and metabolic syndrome in migraineurs should be investigated.

Strengths of this study include the use of large-scale nonoverlapping GWAS of migraine and CAD, stringent quality control measures, and sufficiently rich phenotyping to allow secondary analyses of the 2 migraine subtypes. Nevertheless, some limitations should also be acknowledged. First, only summary statistics and not individual-level genotype data were available for the majority of the samples included in this study. Second, in each included cohort, phenotype information was available on only migraine or CAD, not both. This prevented us from performing...
more in-depth analyses, including analysis for potential gene-gene interactions or identification of CAD risk loci specific to migraineurs. Third, considerable effort was devoted to the careful avoidance of shared controls between studies, and stringent quality control measures within each data set were enforced to reduce the risk of spurious effects resulting from biases within the data sets. Nevertheless, we cannot rule out subtle biases that could affect the current results. Two such concerns are the effects of migraine on survival and the possibility that migraineurs may be more likely to seek medical treatment and therefore be under closer surveillance with regards to other disorders. Future efforts should aim to replicate these findings in sufficiently large prospective data sets where both phenotypes are measured in the same individuals.

Our study provides novel insights into the relationship between migraine and CAD. Intriguingly, and unexpectedly, there was no genetic overlap between MA and CAD, for which epidemiologic studies suggest comorbidity, but there was compelling evidence for a genetic overlap between MO and CAD, where the impact of risk variants overall was in opposite direction for the 2 disorders. The results do not demonstrate that shared common genetic risk factors drive comorbidity between the 2 disorders. However, dissecting the mechanisms underlying the shared risk loci may improve our understanding of both disorders.

AUTHOR AFFILIATIONS

From the Department of Neurology (B.S.W., J.-A.Z.) and FORMI (B.S.W., L.M.J., L.M.P., J.-A.Z.), Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine (B.S.W., J.-A.Z.), University of Oslo, Norway; Wellcome Trust Sanger Institute (B.S.W., P.G., V. Annila, P.P., E.H., A.P.), Wellcome Trust Genome Campus, Cambridge, United Kingdom; Department of Cardiovascular Sciences (C.P.N., N.J.S.), University of Leicester, Clinical Sciences Wing and National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Disease (C.P.N., N.J.S.), Glenfield Hospital, Leicester, United Kingdom; Institute of Stroke and Dementia Research (R. Malik, T.F., M.D.), Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) (R. Malik, M.D.), Munich, Germany; Program in Medical and Population Genetics (P.G., V. Annila, H.-H.W., S.K., C.C., A.P.) and Stanley Center for Psychiatric Research (V. Annila, A.P.), Broad Institute, Cambridge, MA; Psychiatric & Neurodevelopmental Genetics Unit (P.G., A.P.), Department of Psychiatry, Analytic and Translational Genetics Unit (V. Annila, A.P.), Department of Medicine, Center for Human Genetic Research (H.-W.W., S.K.), Cardiovascular Research Center (H.-W.W., S.K.), and Department of Neurology (A.P.), Massachusetts General Hospital, Boston, MA; Division of Preventive Medicine (T. Kurth, D.I.C.), Brigham and Women’s Hospital and Department of Medicine (V. Annila, H.-H.W., S.K.), Harvard Medical School, Boston, MA; Department of Genetics (J.V.H., C.C.) and Department of Neurology (C.C.), Yale University School of Medicine, New Haven, CT; Wellcome Trust Centre for Human Genetics (K.S.E.), University of Oxford, Oxford, United Kingdom; Department of Public Health (J.K.), High Institute and Institute for Molecular Medicine Finland (P.P., E.H., J.K., M.W., A.P.), University of Helsinki, Finland; Department of Epidemiology (N.A., M.A.L., C.e.v.D.), Department of Radiology (M.A.L.), and Department of Neurology (M.A.L.), Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Human Genetics (B.d.V., A.M.J.M.v.d.M.) and Department of Neurology (M.D.F., G.M.T., A.M.J.M.v.d.M.), Leiden University Medical Centre, Leiden, the Netherlands; Department of Neurology and Epileptology and Hertie-Institute for Clinical Brain Research (T.F.), University of Tübingen, Germany; Deutsches Herzzentrum München (T. Kessler, H.S.), Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research) (T. Kessler, H.S.), Partner Site Munich Heart Alliance, Munich, Germany; Institute of Health Sciences (M. Koiranen, M.-R.J.) and Biocenter Oulu (M.-R.J.), Oulu University Hospital, Oulu, Finland; Department of Biomedical Psychology (L.L., D.B.), VU University and EMGO+ Institute for Health and Care Research (L.L.), VU University Medical Centre, Amsterdam, the Netherlands; Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol (G.M., G.D.S.), United Kingdom; Institut für Integrative und experimentelle Genomik (C.W., J.E.), Universität zu Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research) (C.W., J.E.), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany; Department of Neurology (J.O.), Glostrup Hospital, University of Copenhagen, Denmark; Department of Neurology (V. Arto, M. Kallela), Helsinki University Central Hospital, Helsinki, Finland; Department of Medicine (T.L.A.), Stanford University School of Medicine, Stanford, CA; Medizinische Klinik und Poliklinik (S.B.), Universitätsmedizin Mainz, Johannes-Gutenberg-Universität Mainz, Germany; Department of Twin Research and Genetic Epidemiology (L.C., L.Q.), King’s College London, United Kingdom; MedStar Heart Institute (S.E.E.), Washington Hospital Center, Washington, DC; Kiel Pain and Headache Center (H.G.), Kiel, Germany; Division of Cardiovascular and Neuronal Remodelling (A.S.H.), Multidisciplinary Cardiovascular Research Centre, Leids Institute of Health and Therapeutics, University of Leids, United Kingdom; Department of Children, Young People and Families (M.-R.J.) and Department of Mental Health and Substance Abuse Services (J.K.), National Institute for Health and Welfare, Helsinki, Finland; Department of Epidemiology and Biostatistics (M.-R.J.), School of Public Health, MRC–Health Protection Agency (HPA) Centre for Environment and Health, Faculty of Medicine, Imperial College, London, United Kingdom; Unit of Primary Care (M.-R.J.), Oulu University Hospital, Oulu, Finland; Department of Clinical Chemistry (T.L.), Fimlab Laboratories, Tampere, Finland; University of Tampere School of Medicine (T.L.), Finland; The John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre (R. McPherson, R.R., A.F.R.S.) and Atherosgenomics Laboratory (R. McPherson), University of Ottawa Heart Institute, Ontario, Canada; Synlab Center of Laboratory Diagnostics Heidelberg (W.M.), Heidelberg, Germany; Clinical Institute of Medical and Chemical Laboratory Diagnostics (W.M.), Medical University of Graz, Austria; Institute of Public Health (W.M.), Social and Preventive Medicine, Medical Faculty Mannheim, University of Heidelberg, Germany; Institute of Health and Biomedical Innovation (D.R.N.), Queensland University of Technology, Brisbane, Australia; National Heart, Lung, and Blood Institute’s Framingham Heart Study (C.J.O.), Framingham, MA; Department of Medicine, Institute for Translational Medicine and Therapeutics, and Cardiovascular Institute (D.J.R.), University of Pennsylvania, Philadelphia, PA; Department of Clinical Physiology and Nuclear Medicine (O.R.), Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine (O.R.), University of Turku, Finland; Department of Neurology (M.S.), University Hospital Essen, Essen, Germany; dCODE genetics (U.T.), Reykjavik, Iceland; Faculty of Medicine (U.T.), University of Iceland, Reykjavik, Iceland; Institute of Genetics (M.W.), Folkhälsoanläsning Research Center, Helsinki, Finland; Institut National de la Santé et de la Recherche Médicale (INSERM) Research Centre for Epidemiology and Biostatistics (U897) Team–Neuropneumologie (T. Kurth), Bordeaux, France; University of Bordeaux (T. Kurth), France; and Institute of Human Genetics (C.K.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

AUTHOR CONTRIBUTIONS

Bendik S. Winvid and Christopher P. Nelson: performed statistical analysis; conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Rainer Malik: conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Padraig Gormley, Verneri Annila, Jason Vander Heiden, Katherine S. Elliott, Line M. Jacobsen, and Priti Palta: analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Najaf
Amin, Boule de Vries, Eija Häimalinen, Tobias Fredinger, M. Afan Iktom, Thorsten Kessler, Markku Koiranen, Lannie Ligthart, George McMahon, Linda M. Pedersen, Christina Willenborg, and Hong-Hee Won: contributed data; drafted/revised the manuscript for content. Jes Olsen: analyzed and interpreted the data; contributed data; drafted/reviewed the manuscript for content. Ville Arto, Themistocles L. Assimes, Stefan Blankenberg, Dorothy I. Boomsma, Lynne Cherkas, George Davey Smith, Stephen E. Epstein, Jeanette Erdmann, Michel D. Ferrari, Harmut Gobel, Alastair S. Hall, Marijo-Rinta Jarvelin, Mikko Kallela, Jaakko Kaprio, Sekar Kariisaan, Terho Lehmanni, Ruth McPherson, Winfried Mütze, Dale R. Nyholt, Lydia Quayy, Daniel J. Rader, Olli Raitakari, Robert Roberts, Heizbert Schunkert, Markus Schürk, Alexandre F.R. Stewart, Giela M. Terwindt, Unnur Thoro-steinsson, Arn M.J.M. van den Maagdenberg, Cornelia van Duijn, and Maija Wessman: contributed data; drafted/revised the manuscript for content. Tobias Kurth and Christian Kubisch: analyzed and interpreted the data; contributed data; drafted/reviewed the manuscript for content. Daniel I. Chasman and Chris Cotsapas: analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Martin Dichgans: conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Daniel I. Chasman and Chris Cotsapas: analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Martin Dichgans: conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Daniel I. Chasman and Chris Cotsapas: analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Martin Dichgans: conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content. Martin Dichgans: conceived and designed the study; analyzed and interpreted the data; contributed data; drafted/revised the manuscript for content.
is employed by and has received research support from National Institutes of Health. Lydia Quaye reports no disclosures. Daniel J. Rader has served on the scientific advisory boards of Arteriosclerosis, Thrombosis & Vascular Biology; and has received research support from NIH and the Leducq Foundation. Olli Raitakari and Robert Roberts report no disclosures. Heribert Schunkert has served on scientific advisory boards, consulted for, received funding for travel and/or honoraria, and/or received research support from AstraZeneca, AMGEN, MSD SHARP & DOHME, Bayer Vital, Boehringer Ingelheim, Medtronic, Novartis, Pfizer, Sanofi-Aventis, St. Jude, Boston Scientific, and Daiichi Sankyo. Markus Schürks has served on the editorial boards of The Journal of Headache and Pain, and BMC Neurology; and consults Bayer HealthCare Pharmaceuticals. Alexandre F.R. Stewart has served on the editorial board of Frontiers in Cardiovascular Medicine—Cardiovascular Genetics. Gesela M. Terverdít has received research support from the Netherlands Organisation for Scientific Research (NWO). Unnur Thorsteinsdottrí is an employee of deCODE genetics/Amgen. Arn M.J.M. van den Maagdenberg and Cornelia van Duijn report no disclosures. Maija Wessman has received research support from Folkhälsoforskning Foundation, Academy of Finland, and Medicinska Understödföreningens Liv och Halsa. Tobias Kurth has served on editorial boards for BMJ and Cephalalgia; and has received research support from the French National Research Agency and the University of Bordeaux. Christian Kubisch reports no disclosures. Martin Dichgans has served on editorial boards for Stroke, the International Journal of Stroke, Cerebrovascular Diseases, and Journal of Neurochemistry; has consulted for Bayer Vital, Boehringer Ingelheim, Bristol-Myers Squibb, and Heel; and has received research support from Wellcome Trust, European Union, and German Federal Ministry of Education and Research. Daniel I. Chaushman has served on the editorial board for Arteriosclerosis, Thrombosis, and Vascular Biology; and has received research support from NINDS, NIAID, and RE Children’s Consortium. John-Anker Zwart reports no disclosures. Nilesh J. Samani has served on editorial boards for Circulation: Cardiovascular Genetics and Heart; and has received research support from British Heart Foundation and National Institute for Health Research. Aarno Palotie has been a member of the Pfizer Genetics Scientific Advisory Panel; has received travel expenses and/or honoraria for lectures or educational activities not funded by industry; and has received research support from the Finnish Academy, European Union NIH, NINDS, Juvenile Foundation, and the Finnish Foundation for Cardiovascular Research. Go to Neurology.org for full disclosure forms.

Received April 4, 2015. Accepted in final form May 27, 2015.

REFERENCES

Genetic analysis for a shared biological basis between migraine and coronary artery disease
Bendik S. Winsvold, Christopher P. Nelson, Rainer Malik, et al.

Neurol Genet 2015;1:
DOI 10.1212/NXG.0000000000000010

This information is current as of July 2, 2015
Updated Information & Services
including high resolution figures, can be found at:
http://ng.neurology.org/content/1/1/e10.full.html

Supplementary Material
Supplementary material can be found at:
http://ng.neurology.org/content/suppl/2015/07/02/1.1.e10.DC1
http://ng.neurology.org/content/suppl/2015/07/02/1.1.e10.DC2

References
This article cites 39 articles, 9 of which you can access for free at:
http://ng.neurology.org/content/1/1/e10.full.html##ref-list-1

Citations
This article has been cited by 5 HighWire-hosted articles:
http://ng.neurology.org/content/1/1/e10.full.html##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Association studies in genetics
http://ng.neurology.org/cgi/collection/association_studies_in_genetics
Cardiac; see Cerebrovascular Disease/Cardiac
http://ng.neurology.org/cgi/collection/cardiac_see_cerebrovascular_disease-cardiac
Migraine
http://ng.neurology.org/cgi/collection/migraine

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://ng.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://ng.neurology.org/misc/addir.xhtml#reprintsus

Neurology Genet is an official journal of the American Academy of Neurology. Published since April 2015, it is an open-access, online-only, continuous publication journal. Copyright © 2015 American Academy of Neurology. All rights reserved. Online ISSN: 2376-7839.