Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
    • UDDA Revision Series
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Education
    • Genetics
    • Neuroimmunology & Neuroinflammation
  • Online Sections
    • Neurology Video Journal Club
    • Diversity, Equity, & Inclusion (DEI)
    • Neurology: Clinical Practice Accelerator
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Null Hypothesis
    • Patient Pages
    • Topics A-Z
    • Translations
    • UDDA Revision Series
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit Manuscript
    • Author Center
  • Home
  • Articles
  • Issues

User menu

  • My Alerts
  • Log in

Search

  • Advanced search
Neurology Genetics
Home
A peer-reviewed clinical and translational neurology open access journal
  • My Alerts
  • Log in
Site Logo
  • Home
  • Articles
  • Issues

Share

June 2023; 9 (3) Research ArticleOpen Access

Identifying Aging and Alzheimer Disease–Associated Somatic Variations in Excitatory Neurons From the Human Frontal Cortex

Meng Zhang, Gerard A. Bouland, View ORCID ProfileHenne Holstege, View ORCID ProfileMarcel J.T. Reinders
First published April 24, 2023, DOI: https://doi.org/10.1212/NXG.0000000000200066
Meng Zhang
From the Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands.
MSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerard A. Bouland
From the Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands.
MSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henne Holstege
From the Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Henne Holstege
Marcel J.T. Reinders
From the Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marcel J.T. Reinders
Full PDF
Citation
Identifying Aging and Alzheimer Disease–Associated Somatic Variations in Excitatory Neurons From the Human Frontal Cortex
Meng Zhang, Gerard A. Bouland, Henne Holstege, Marcel J.T. Reinders
Neurol Genet Jun 2023, 9 (3) e200066; DOI: 10.1212/NXG.0000000000200066

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
402

Share

  • Article
  • Figures & Data
  • Info & Disclosures
Loading

Abstract

Background and Objectives With age, somatic mutations accumulated in human brain cells can lead to various neurologic disorders and brain tumors. Because the incidence rate of Alzheimer disease (AD) increases exponentially with age, investigating the association between AD and the accumulation of somatic mutation can help understand the etiology of AD.

Methods We designed a somatic mutation detection workflow by contrasting genotypes derived from whole-genome sequencing (WGS) data with genotypes derived from scRNA-seq data and applied this workflow to 76 participants from the Religious Order Study and the Rush Memory and Aging Project (ROSMAP) cohort. We focused only on excitatory neurons, the dominant cell type in the scRNA-seq data.

Results We identified 196 sites that harbored at least 1 individual with an excitatory neuron–specific somatic mutation (ENSM), and these 196 sites were mapped to 127 genes. The single base substitution (SBS) pattern of the putative ENSMs was best explained by signature SBS5 from the Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures, a clock-like pattern correlating with the age of the individual. The count of ENSMs per individual also showed an increasing trend with age. Among the mutated sites, we found 2 sites tend to have more mutations in older individuals (16:6899517 [RBFOX1], p = 0.04; 4:21788463 [KCNIP4], p < 0.05). In addition, 2 sites were found to have a higher odds ratio to detect a somatic mutation in AD samples (6:73374221 [KCNQ5], p = 0.01 and 13:36667102 [DCLK1], p = 0.02). Thirty-two genes that harbor somatic mutations unique to AD and the KCNQ5 and DCLK1 genes were used for gene ontology (GO)–term enrichment analysis. We found the AD-specific ENSMs enriched in the GO-term “vocalization behavior” and “intraspecies interaction between organisms.” Of interest we observed both age-specific and AD-specific ENSMs enriched in the K+ channel–associated genes.

Discussion Our results show that combining scRNA-seq and WGS data can successfully detect putative somatic mutations. The putative somatic mutations detected from ROSMAP data set have provided new insights into the association of AD and aging with brain somatic mutagenesis.

Glossary

AD=
Alzheimer disease;
Aβ=
amyloid beta;
COSMIC=
Catalogue of Somatic Mutations in Cancer;
CSTB=
cystatin B;
FDR=
false discovery rate;
GO=
gene ontology;
MAP=
the Rush Memory and Aging Project;
ROS=
the Religious Order Study;
SBS=
single base substitution;
WGS=
whole-genome sequencing

Footnotes

  • Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG.

  • Previously published in medRxiv (doi: https://doi.org/10.1101/2022.05.25.22275538).

  • Submitted and externally peer reviewed. The handling editor was Associate Editor Suman Jayadev, MD.

  • Received October 24, 2022.
  • Accepted in final form February 3, 2023.
  • Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

View Full Text

Letters: Rapid online correspondence

No comments have been published for this article.
Comment

REQUIREMENTS

You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.

Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.

If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.

Submission specifications:

  • Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
  • Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
  • Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Publishing Agreement Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Abstract
    • Glossary
    • Methods
    • Results
    • Discussion
    • Study Funding
    • Disclosure
    • Acknowledgment
    • Appendix Authors
    • Footnotes
    • References
  • Figures & Data
  • Info & Disclosures
Advertisement

Association Between Fluctuations in Blood Lipid Levels Over Time With Incident Alzheimer Disease and Alzheimer Disease–Related Dementias

Dr. Sevil Yaşar and Dr. Behnam Sabayan

► Watch

Related Articles

  • No related articles found.

Topics Discussed

  • Alzheimer disease

Alert Me

  • Alert me when eletters are published
Neurology Genetics: 9 (6)

Articles

  • Articles
  • Issues
  • Popular Articles

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Education
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology: Genetics | Online ISSN: 2376-7839

© 2023 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise