Skip to main content
Advertisement
  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Genetics
    • Neuroimmunology & Neuroinflammation
    • Education
  • Online Sections
    • Neurology Video Journal Club
    • Inclusion, Diversity, Equity, Anti-racism, & Social Justice (IDEAS)
    • Innovations in Care Delivery
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Null Hypothesis
    • Patient Pages
    • Translations
    • Topics A-Z
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit a Manuscript
    • Author Center

Advanced Search

Main menu

  • Neurology.org
  • Journals
    • Neurology
    • Clinical Practice
    • Genetics
    • Neuroimmunology & Neuroinflammation
    • Education
  • Online Sections
    • Neurology Video Journal Club
    • Inclusion, Diversity, Equity, Anti-racism, & Social Justice (IDEAS)
    • Innovations in Care Delivery
    • Practice Buzz
    • Practice Current
    • Residents & Fellows
    • Without Borders
  • Collections
    • COVID-19
    • Disputes & Debates
    • Health Disparities
    • Infographics
    • Null Hypothesis
    • Patient Pages
    • Translations
    • Topics A-Z
  • Podcast
  • CME
  • About
    • About the Journals
    • Contact Us
    • Editorial Board
  • Authors
    • Submit a Manuscript
    • Author Center
  • Home
  • Articles
  • Issues

User menu

  • My Alerts
  • Log in

Search

  • Advanced search
Neurology Genetics
Home
A peer-reviewed clinical and translational neurology open access journal
  • My Alerts
  • Log in
Site Logo
  • Home
  • Articles
  • Issues

Share

April 2021; 7 (2) ArticleOpen Access

Polygenic Risk Scores Augment Stroke Subtyping

View ORCID ProfileJiang Li, Durgesh P. Chaudhary, Ayesha Khan, Christoph Griessenauer, David J. Carey, Ramin Zand, Vida Abedi
First published March 9, 2021, DOI: https://doi.org/10.1212/NXG.0000000000000560
Jiang Li
From the Department of Molecular and Functional Genomics (J.L., D.J.C., V.A.), Weis Center for Research, Geisinger Health System; Neuroscience Institute (D.P.C., A.K., C.G., R.Z.), Geisinger Health System, Danville, PA; Biocomplexity Institute (V.A.), Virginia Tech, Blacksburg, VA; and Research Institute of Neurointervention (C.G.), Paracelsus Medical University, Salzburg, Austria.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jiang Li
  • For correspondence: jli@geisinger.edu
Durgesh P. Chaudhary
From the Department of Molecular and Functional Genomics (J.L., D.J.C., V.A.), Weis Center for Research, Geisinger Health System; Neuroscience Institute (D.P.C., A.K., C.G., R.Z.), Geisinger Health System, Danville, PA; Biocomplexity Institute (V.A.), Virginia Tech, Blacksburg, VA; and Research Institute of Neurointervention (C.G.), Paracelsus Medical University, Salzburg, Austria.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dpchaudhary@geisinger.edu
Ayesha Khan
From the Department of Molecular and Functional Genomics (J.L., D.J.C., V.A.), Weis Center for Research, Geisinger Health System; Neuroscience Institute (D.P.C., A.K., C.G., R.Z.), Geisinger Health System, Danville, PA; Biocomplexity Institute (V.A.), Virginia Tech, Blacksburg, VA; and Research Institute of Neurointervention (C.G.), Paracelsus Medical University, Salzburg, Austria.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: akhan2@geisinger.edu
Christoph Griessenauer
From the Department of Molecular and Functional Genomics (J.L., D.J.C., V.A.), Weis Center for Research, Geisinger Health System; Neuroscience Institute (D.P.C., A.K., C.G., R.Z.), Geisinger Health System, Danville, PA; Biocomplexity Institute (V.A.), Virginia Tech, Blacksburg, VA; and Research Institute of Neurointervention (C.G.), Paracelsus Medical University, Salzburg, Austria.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: christoph.griessenauer@gmail.com
David J. Carey
From the Department of Molecular and Functional Genomics (J.L., D.J.C., V.A.), Weis Center for Research, Geisinger Health System; Neuroscience Institute (D.P.C., A.K., C.G., R.Z.), Geisinger Health System, Danville, PA; Biocomplexity Institute (V.A.), Virginia Tech, Blacksburg, VA; and Research Institute of Neurointervention (C.G.), Paracelsus Medical University, Salzburg, Austria.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: djcarey@geisinger.edu
Ramin Zand
From the Department of Molecular and Functional Genomics (J.L., D.J.C., V.A.), Weis Center for Research, Geisinger Health System; Neuroscience Institute (D.P.C., A.K., C.G., R.Z.), Geisinger Health System, Danville, PA; Biocomplexity Institute (V.A.), Virginia Tech, Blacksburg, VA; and Research Institute of Neurointervention (C.G.), Paracelsus Medical University, Salzburg, Austria.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vida Abedi
From the Department of Molecular and Functional Genomics (J.L., D.J.C., V.A.), Weis Center for Research, Geisinger Health System; Neuroscience Institute (D.P.C., A.K., C.G., R.Z.), Geisinger Health System, Danville, PA; Biocomplexity Institute (V.A.), Virginia Tech, Blacksburg, VA; and Research Institute of Neurointervention (C.G.), Paracelsus Medical University, Salzburg, Austria.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Full PDF
Citation
Polygenic Risk Scores Augment Stroke Subtyping
Jiang Li, Durgesh P. Chaudhary, Ayesha Khan, Christoph Griessenauer, David J. Carey, Ramin Zand, Vida Abedi
Neurol Genet Apr 2021, 7 (2) e560; DOI: 10.1212/NXG.0000000000000560

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions

Make Comment

See Comments

Downloads
857

Share

  • Article
  • Figures & Data
  • Info & Disclosures
Loading

Abstract

Objective To determine whether the polygenic risk score (PRS) derived from MEGASTROKE is associated with ischemic stroke (IS) and its subtypes in an independent tertiary health care system and to identify the PRS derived from gene sets of known biological pathways associated with IS.

Methods Controls (n = 19,806/7,484, age ≥69/79 years) and cases (n = 1,184/951 for discovery/replication) of acute IS with European ancestry and clinical risk factors were identified by leveraging the Geisinger Electronic Health Record and chart review confirmation. All Geisinger MyCode patients with age ≥69/79 years and without any stroke-related diagnostic codes were included as low risk control. Genetic heritability and genetic correlation between Geisinger and MEGASTROKE (EUR) were calculated using the summary statistics of the genome-wide association study by linkage disequilibrium score regression. All PRS for any stroke (AS), any ischemic stroke (AIS), large artery stroke (LAS), cardioembolic stroke (CES), and small vessel stroke (SVS) were constructed by PRSice-2.

Results A moderate heritability (10%–20%) for Geisinger sample as well as the genetic correlation between MEGASTROKE and the Geisinger cohort was identified. Variation of all 5 PRS significantly explained some of the phenotypic variations of Geisinger IS, and the R2 increased by raising the cutoff for the age of controls. PRSLAS, PRSCES, and PRSSVS derived from low-frequency common variants provided the best fit for modeling (R2 = 0.015 for PRSLAS). Gene sets analyses highlighted the association of PRS with Gene Ontology terms (vascular endothelial growth factor, amyloid precursor protein, and atherosclerosis). The PRSLAS, PRSCES, and PRSSVS explained the most variance of the corresponding subtypes of Geisinger IS suggesting shared etiologies and corroborated Geisinger TOAST subtyping.

Conclusions We provide the first evidence that PRSs derived from MEGASTROKE have value in identifying shared etiologies and determining stroke subtypes.

Glossary

AFib=
atrial fibrillation;
APP=
amyloid precursor protein;
ASL=
a synthesized TOAST subtype that represents a combination of Acute SVS (n = 79) and LAS (n = 124);
AUC-ROC=
area under the curve for receiver operating characteristics;
BMI=
body mass index;
CAD=
coronary artery disease;
CES=
cardioembolic stroke;
CI=
confidence interval;
DETERMINED=
strokes of other determined etiology;
EHR=
electronic health record;
EUR=
European ancestry;
GO=
Gene Ontology;
GWAS=
genome-wide association study;
HWE=
Hardy-Weinberg equilibrium;
ICD=
International Classification of Diseases;
IS=
ischemic stroke;
LAS=
large artery stroke;
LDSC=
linkage disequilibrium score regression;
MAF=
minor allele frequency;
ML=
machine learning;
OR=
odds ratio;
PCA=
principal component analysis;
PRS=
polygenic risk score;
SNP=
single nucleotide polymorphism;
SVS=
small vessel stroke;
T2D=
type 2 diabetes;
TOAST=
trial of ORG 10172 in acute stroke treatment;
UNDETERMINED=
strokes of undetermined etiology

Footnotes

  • Go to Neurology.org/NG for full disclosures. Funding information is provided at the end of the article.

  • The Article Processing Charge was funded by the authors.

  • Regeneron Genetics Center coinvestigators are listed in appendix 2 at the end of the article.

  • Received October 7, 2020.
  • Accepted in final form December 2, 2020.
  • Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

View Full Text

Letters: Rapid online correspondence

No comments have been published for this article.
Comment

REQUIREMENTS

If you are uploading a letter concerning an article:
You must have updated your disclosures within six months: http://submit.neurology.org

Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.

If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.

Submission specifications:

  • Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
  • Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
  • Submit only on articles published within 6 months of issue date.
  • Do not be redundant. Read any comments already posted on the article prior to submission.
  • Submitted comments are subject to editing and editor review prior to posting.

More guidelines and information on Disputes & Debates

Compose Comment

More information about text formats

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
NOTE: The first author must also be the corresponding author of the comment.
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Publishing Agreement
NOTE: All authors, besides the first/corresponding author, must complete a separate Publishing Agreement Form and provide via email to the editorial office before comments can be posted.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

You May Also be Interested in

Back to top
  • Article
    • Abstract
    • Glossary
    • Method
    • Results
    • Discussion
    • Study Funding
    • Disclosure
    • Acknowledgment
    • Appendix 1 Authors
    • Appendix 2 Coinvestigators
    • Footnotes
    • References
  • Figures & Data
  • Info & Disclosures

Related Articles

  • No related articles found.

Topics Discussed

  • All Cerebrovascular disease/Stroke
  • Case control studies
  • Embolism
  • Association studies in genetics
  • Risk factors in epidemiology

Alert Me

  • Alert me when eletters are published
Advertisement
Neurology Genetics: 8 (4)

Articles

  • Articles
  • Issues
  • Popular Articles

About

  • About the Journals
  • Ethics Policies
  • Editors & Editorial Board
  • Contact Us
  • Advertise

Submit

  • Author Center
  • Submit a Manuscript
  • Information for Reviewers
  • AAN Guidelines
  • Permissions

Subscribers

  • Subscribe
  • Sign up for eAlerts
  • RSS Feed
Site Logo
  • Visit neurology Template on Facebook
  • Follow neurology Template on Twitter
  • Visit Neurology on YouTube
  • Neurology
  • Neurology: Clinical Practice
  • Neurology: Genetics
  • Neurology: Neuroimmunology & Neuroinflammation
  • Neurology: Education
  • AAN.com
  • AANnews
  • Continuum
  • Brain & Life
  • Neurology Today

Wolters Kluwer Logo

Neurology: Genetics | Online ISSN: 2376-7839

© 2022 American Academy of Neurology

  • Privacy Policy
  • Feedback
  • Advertise