Brain-derived neurotrophic factor, epigenetics in stroke skeletal muscle, and exercise training
Citation Manager Formats
Make Comment
See Comments

Abstract
Objective (1) To compare paretic (P) vs nonparetic (NP) skeletal muscle brain-derived neurotrophic factor (BDNF) and the effects of resistive training (RT) on systemic and skeletal muscle BDNF mRNA expression in stroke; and (2) to compare the DNA methylation profile for BDNF and BDNFAS (BDNF antisense RNA) between P and NP muscle and the effects of aerobic exercise training (AEX) on DNA methylation in stroke.
Methods In this longitudinal investigation, participants (50–76 years) with chronic stroke underwent a fasting blood draw, a 12-week (3×/week) RT intervention (n = 16), and repeated bilateral vastus lateralis muscle tissue biopsies (n = 10) with BDNF expression determined by RT-PCR. Five stroke survivors completed 6 months of AEX (3×/week) and had bilateral muscle biopsies. DNA methylation status in gene BDNF and BDNFAS was assessed by Illumina 450k methylation array.
Results P muscle had ∼45% lower BDNF mRNA expression than NP muscle (6.79 ± 1.30 vs 10.52 ± 2.06 arbitrary units [AU], p < 0.05), and P muscle exhibited differential methylation status in the DNA sequences of BDNF (3 CpG [5′-C-phosphate-G-3′] sites, p = 0.016–0.044) and BDNFAS (1 CpG site, p = 0.016) compared to NP. Plasma BDNF and muscle BDNF messenger RNA (mRNA) expression did not significantly change after RT. BDNFAS DNA methylation increased after AEX in P relative to NP muscle (p = 0.017).
Conclusions This is the first evidence that stroke hemiparesis reduces BDNF skeletal muscle expression, with our findings identifying methylation alterations on the DNA sequence of BDNF and BDNFAS gene. Preliminary results further indicate that AEX increases methylation in BDNFAS gene, which presumably could regulate the expression of BDNF.
Glossary
- AEX=
- aerobic exercise training;
- BDNF=
- brain-derived neurotrophic factor;
- BDNFAS=
- BDNF Antisense RNA;
- NP=
- non-paretic;
- P=
- paretic;
- RT=
- resistive training
Footnotes
Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG.
The Article Processing Charge was funded by the Veterans Affairs.
- Received January 24, 2019.
- Accepted in final form March 25, 2019.
- Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Cutaneous α-Synuclein Signatures in Patients With Multiple System Atrophy and Parkinson Disease
Dr. Rizwan S. Akhtar and Dr. Sarah Brooker
► Watch
Related Articles
- No related articles found.
Topics Discussed
Alert Me
Recommended articles
-
Clinical Implications of Neuroscience Research
Brain-derived neurotrophic factorRegulation, effects, and potential clinical relevanceEduardo E. Benarroch et al.Neurology, March 27, 2015 -
Article
Higher brain BDNF gene expression is associated with slower cognitive decline in older adultsAron S. Buchman, Lei Yu, Patricia A. Boyle et al.Neurology, January 27, 2016 -
Articles
The p.Val66Met polymorphism in the BDNF gene protects against early seizures in Rett syndromeJ. Nectoux, N. Bahi-Buisson, I. Guellec et al.Neurology, April 23, 2008 -
Articles
The common BDNF polymorphism may be a modifier of disease severity in Rett syndromeB. Ben Zeev, A. Bebbington, G. Ho et al.Neurology, April 06, 2009