Development of a rapid functional assay that predicts GLUT1 disease severity
Citation Manager Formats
Make Comment
See Comments

Abstract
Objective To examine the genotype to phenotype connection in glucose transporter type 1 (GLUT1) deficiency and whether a simple functional assay can predict disease outcome from genetic sequence alone.
Methods GLUT1 deficiency, due to mutations in SLC2A1, causes a wide range of epilepsies. One possible mechanism for this is variable impact of mutations on GLUT1 function. To test this, we measured glucose transport by GLUT1 variants identified in population controls and patients with mild to severe epilepsies. Controls were reference sequence from the NCBI and 4 population missense variants chosen from public reference control databases. Nine variants associated with epilepsies or movement disorders, with normal intellect in all individuals, formed the mild group. The severe group included 5 missense variants associated with classical GLUT1 encephalopathy. GLUT1 variants were expressed in Xenopus laevis oocytes, and glucose uptake was measured to determine kinetics (Vmax) and affinity (Km).
Results Disease severity inversely correlated with rate of glucose transport between control (Vmax = 28 ± 5), mild (Vmax = 16 ± 3), and severe (Vmax = 3 ± 1) groups, respectively. Affinities of glucose binding in control (Km = 55 ± 18) and mild (Km = 43 ± 10) groups were not significantly different, whereas affinity was indeterminate in the severe group because of low transport rates. Simplified analysis of glucose transport at high concentration (100 mM) was equally effective at separating the groups.
Conclusions Disease severity can be partly explained by the extent of GLUT1 dysfunction. This simple Xenopus oocyte assay complements genetic and clinical assessments. In prenatal diagnosis, this simple oocyte glucose uptake assay could be useful because standard clinical assessments are not available.
Glossary
- GLUT1=
- glucose transporter type 1
Footnotes
↵* These authors contributed equally.
Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG.
The Article Processing Charge was funded by National Health and Medical Research Council (NHMRC).
- Received April 3, 2018.
- Accepted in final form August 9, 2018.
- Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Letters: Rapid online correspondence
NOTE: All contributors' disclosures must be entered and current in our database before comments can be posted. Enter and update disclosures at http://submit.ng.neurology.org. Exception: replies to comments concerning an article you originally authored do not require updated disclosures.
- Stay timely. Submit only on articles published within the last 8 weeks.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- 200 words maximum.
- 5 references maximum. Reference 1 must be the article on which you are commenting.
- 5 authors maximum. Exception: replies can include all original authors of the article.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Related Articles
- No related articles found.