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Abstract
Objective
To determine the putative protective relationship of educational attainment on Alzheimer
disease (AD) risk using Mendelian randomization and to test the hypothesis that by using
genetic regions surrounding individually associated single nucleotide polymorphisms (SNPs)
as the instrumental variable, we can identify genes that contribute to the relationship.

Methods
We performed Mendelian randomization using genome-wide association study summary sta-
tistics from studies of educational attainment and AD in two stages. Our instrumental variable
comprised (1) 1,271 SNPs significantly associated with educational attainment and (2) in-
dividual 2-Mb regions surrounding the genome-wide significant SNPs.

Results
A causal inverse relationship between educational attainment and AD was identified by the
1,271 SNPs (odds ratio = 0.63; 95% confidence interval, 0.54–0.74; p = 4.08 x 10−8). Analysis of
individual loci identified 2 regions that significantly replicated the causal relationship. Genes
within these regions included LRRC2, SSBP2, and NEGR1; the latter a regulator of neuronal
growth.

Conclusions
Educational attainment is an important protective factor for AD. Genomic regions that sig-
nificantly paralleled the overall causal relationship contain genes expressed in neurons or
involved in the regulation of neuronal development.
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Education has consistently been identified as an important
antecedent factor in Alzheimer disease (AD), whereby ad-
vanced educational attainment is thought to reduce AD
risk.1,2 In addition, educational attainment and AD may be
genetically related based on the genome-wide correlation of
−0.31 (p = 4 × 10−4).3 However, confounding factors that
affect educational attainment such as socioeconomic status,
nutrition, and ethnicity blur the relationship.

Mendelian randomization limits confounding by using in-
strumental variables associated with a risk factor to establish
effects on the outcome. The largest (n = 1,131,881) genome-
wide association study (GWAS) of educational attainment4

identified 1,271 significantly associated single nucleotide
polymorphisms (SNPs), and a separate 2013 GWAS from the
International Genomics of Alzheimer’s Project (IGAP) pro-
vided AD SNP association data. The data created an oppor-
tunity to examine the role of educational attainment in AD
through Mendelian randomization.

In GWAS analyses, the significantly associated tag SNPs may
not be the causal SNP.5 When pleiotropic effects and het-
erogeneity remain minimal, the instrumental variable com-
posed of the index and all associated SNPs in a region
improves the validity of the relationship,6 explains a greater
percentage of variation in the phenotype, and reduces het-
erogeneous effects of using fewer SNPs.7

In addition to testing the overall hypothesis that educational
attainment has a protective effect on AD risk, we tested the
hypothesis that a subset of genetic loci related to educational
attainment might individually significantly reflect the overall
protective relationship with AD. To maximize detection, we
included independent SNPs in a 2-Mb region surrounding
each of the 1,271 SNPs significantly associated with educa-
tional attainment.3

Methods
We used available summary statistics from the analysis of all
discovery data excluding the 23andMe cohort in the largest
GWASmeta-analysis of educational attainment3 (n = 766,345).
Summary statistics from the IGAPGWAS of AD,8 consisting of
54,162 individuals and 7,055,881 analyzed SNPs, were used for
the outcome. There is a small overlap of samples used from
the educational attainment and AD GWAS. Sample overlap
in a 2-sample Mendelian randomization can cause bias in
results; however, because of the large sample size of the edu-
cational attainment GWAS and minimal overlap of the sample,

no appreciable bias was expected. The study population in both
GWASs were of European descent.

SNP selection
TwoSampleMR, an R package that performs Mendelian ran-
domization using data fromMR-Base,9 was used in R (R v.3.3.1)
to perform all analyses. Mendelian randomization was per-
formed using two different schemes for selecting SNPs for
the instrumental variable:

1. 1,271 SNP analysis: the instrumental variables consisted
of the 1,271 approximately independent SNPs (all with
p < 5 × 10−8) significantly associated with educational
attainment and were used to test for causality to AD.
Independence for SNPs in the analysis was established
using linkage disequilibrium (LD) clumping (r2 ≥ 0.001
within a 10,000-kb window).

2. Individual locus analyses: Mendelian randomization was
performed independently on each of the 1,271 loci using
SNPswithin 1-Mb upstream and downstream of individual
SNPs. We used more liberal inclusion criteria including
SNPs associated with educational attainment at p < 0.01
and clumped at r2 ≥ 0.1 within a 250-kb window.

Of the 1,271 independent loci, SNPs found within a 2-Mb
region of another were merged together, resulting in 441
independent loci.

Mendelian randomization analyses
The strictest LD threshold was applied for the first analysis,
using default settings in MR-Base; for analysis 2, we allowed
for more SNPs with still minimal LD to be included in the
analysis, as we hypothesized that this would strengthen the
per-loci analysis. Those SNPs remaining after LD clumping
were queried within the IGAP summary statistics, if they were
not present in that data set, genetic proxies were found, and
finally SNPs for which no proxies could be found were ex-
cluded. Next, SNPs were harmonized for the effect allele
between the 2 GWAS data sets or removed if harmonization
predictions were inconclusive. For the joint 1,271 SNP anal-
ysis, 387 remained after LD clumping, and 13 SNPs were
neither found in the IGAP nor had appropriate proxies and
thus removed. Finally, 57 SNPs were removed because of low
confidence that the effect allele of the exposure corresponded
to the same allele in the outcome. Therefore, a total of 317
SNPs were included in the initial joint SNP analysis. For the
regional analyses, SNPs were similarly removed if not found
in the IGAP or if allele harmonization failed. The inverse
variance weighted (IVW) method was used to calculate odds
ratios (ORs). Results are reported as theOR (±95% confidence

Glossary
AD = Alzheimer disease;CI = confidence interval;GWAS = genome-wide association study; IGAP = International Genomics of
Alzheimer’s Project; IVW = inverse variance weighted; LD = linkage disequilibrium;OR = odds ratio; SNP = single nucleotide
polymorphism.
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Table Results from inverse variance weighted method and sensitivity analyses for Mendelian randomization analyses

Inverse variance weighted method Sensitivity analysis

Top educational attainment SNPs (317 SNPs included) Odds ratio = 0.63; 95% CI, 0.54–0.74; p = 4.08 × 10−8 Egger regression: intercept = 0.003; p value = 0.43

Locusa Chromosome Gene(s)b Proposed role of gene(s)
No. of
SNPsc

Inverse variance weighted
method

Sensitivity
analysis

Odds ratio
(95% CI) p Value

Egger
regression
(intercept ±
SE, p value)

rs7552964, rs10789285, rs1024268, rs663251, rs481940, rs72677177, rs34122915,
rs34305371, rs2568955, rs1445591, rs12028229, rs11210228, rs74091672,
rs11210400, rs1569092, rs28482086

1 LRRC7/PTGER3/
NEGR1/FPGT-
TNNI3K/
TNNI3K/TYW3

Necessary for synaptic spine
architecture and function/1
receptor for prostaglandin
E2/cell adhesion and/or
regenerative axon sprouting/
read-through transcription/
MAPKKK family involved in
cardiac physiology/stabilizes
codon-anticodon interactions

89 0.31(0.19–0.50) 1.92 × 10−6 0.013 ± 0.006, p
value = 0.05

rs1910005 5 SSBP2 DNA damage response;
maintenance of genome
stability; telomere repair

17 0.07
(0.02–0.25)

5.8 × 10−5 −0.008 ± 0.017,
p value = 0.66

Abbreviation: SNP = single nucleotide polymorphism.
Top: 1,271 SNP Analysis.
Bottom: Individual locus analyses.
a SNPs significantly associated with educational attainment in Lee et al.,4 in this locus.
b The gene or closest gene to the SNP.
c Number of SNPs that were included in the regional analysis.
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interval [CI]) of AD risk per SD increase in educational at-
tainment in each test.

Sensitivity analyses
Mendelian randomization requires that that the instrumental
variables meet 3 requirements: it must be associated with the
risk factor, not associated with any confounder of the risk factor
or outcome, and is only associated with the outcome through
the risk factor. Sensitivity analyses following the initial analysis
provide confidence that assumptions of the instrumental vari-
ables were not broken. In addition to the IVW, the weighted
median method was used to measure causality and provided
consistent results with IVW when at least 50% of the in-
strumental variables were valid. Next, the intercept of the
Mendelian randomization–Egger test was used to determine
potential horizontal pleiotropy or an effect of the instrumental
variables on a phenotype other than the outcome. As the in-
tercept neared zero in the mendelian randomization–Egger
test, horizontal pleiotropy was reduced. The Steiger test of
directionality was used to confirm directionality of the effect,
i.e., that the SNPs first affected educational attainment and
subsequently that AD risk was affected through educational
attainment. Finally, the radial regression analyses were per-
formed for the inverse variance methods, which identify any
significant SNP outliers using the Cochran’s Q-statistic.10

Results
Using the 1,271 SNPs associated with educational attainment,
we detected statistically significant evidence for causation
between educational attainment and AD such that an increase
of 4.2 years of educational attainment was associated with
a 37% reduction in AD risk (OR—scaled per SD, 4.2 years =
0.63; 95% CI, 0.54–0.74; p = 4.08 × 10−8).

In the per-loci analyses of the 1,271 regions, 2 independent
SNP regions demonstrated a statistically significant inverse
relationship between educational attainment and AD risk
(Bonferroni-corrected threshold p < 1.2 × 10−4). These regions
include the neuronal growth regulator precursor (NEGR1)
gene, leucine-rich repeat containing 7 (LRCC7) gene, and
prostaglandin E receptor 3 (PTGER3) gene (table 1).

Sensitivity analyses were performed for all Mendelian ran-
domization analyses. There was no indication of pleiotropy,
reverse causality, or heterogeneity, and the weighted median
method showed consistent results with IVW overall in the
significant analyses.

Discussion
Consistent with earlier reports, we found an inverse re-
lationship of educational attainment with AD.11–13 In addi-
tion, we also identified regions that individually significantly
replicated the causal relationship of education on AD, several
of which were found to contain genes expressed in neurons or

involved in regulation of neuronal development. For example,
one of the SNPs is within the LRCC7 gene, which is crucial to
dendritic spine architecture and function and may be involved
in bipolar disorder.14 Another SNP within the intronic region
of the NEGR1 gene is also highly expressed in neurons and
has been found to be associated with major depressive dis-
order.15 An SNP was found in the PTGER3 gene, which is
thought to be involved in the modulation of neurotransmitter
release in neurons.

One limitation of using theMendelian randomizationmethod
for outcomes with other strong nongenetic factors risk factors
is that the CIs tend to be large. However, this outcome is
preferable to the bias that is inherent in epidemiologic studies,
which unavoidably include confounders.16 Taken together,
the results presented here, along with earlier reports, establish
a putative causal relationship between educational attainment
and AD.

The key next steps are to replicate these findings in diverse
ethnic groups with more variable educational experiences and
to identify and validate specific variants within these loci that
account for the association.
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